【今日CV 计算机视觉论文速览 第100期】Mon, 15 Apr 2019

今日CS.CV 计算机视觉论文速览
Mon, 15 Apr 2019
Totally 37 papers
?上期速览更多精彩请移步主页

在这里插入图片描述

Interesting:

?MAANet多视角图像超分辨,通过局域注意力和全局注意力机制解决图像超分辨中高频信息缺失的问题,从局域和全局视角来分辨特征,并提出了基于注意力残差单元来便于深度网络的训练。(from 香港理工 上海交大)
在这里插入图片描述
局域注意力机制:
在这里插入图片描述
全局注意力机制:
在这里插入图片描述
局域注意力残差块:
在这里插入图片描述
在这里插入图片描述
一些结果的恢复过程:
在这里插入图片描述
dataset:n DIV2K dataset [28], Set5 [5], Set14 [37], BSDS100 [1], Urban100 [14], and Manga109 [22].


?通过对抗样本分析并提高超分辨模型的鲁棒性, (from 延世大学 UCLA)
低分辨率图像中注入了很少的扰动,但对结果造成很大影响。基于I-FGSM [11]对抗攻击下超分辨的结果呈现出各式各样的畸变:
在这里插入图片描述在这里插入图片描述
各种模型的鲁棒性:
在这里插入图片描述

?基于3D可变形模型和GAN的人脸去遮挡, 3DMM不仅作为几何先验,同时为局域判别器提供了人脸区域。利用全局和局域对抗网络实现了3D人脸的去遮挡,(from Inha University)
在这里插入图片描述
网络架构,包含了局域和全局的判别器,以及人脸部分的掩膜作为GT:
在这里插入图片描述
合成与真实数据结果:
在这里插入图片描述
dataset:300W-3D,AFLW2000-3D CelebA [16]

?Deep Dense Trajectory (DDT), The Sound of Motions, 从运动中分辨出声音的音源(from MIT)
从运动中分辨出两个个演奏者的音乐
在这里插入图片描述
网络包含了运动轨迹特征抽取、外部特征、视觉特征融合(作为声音分离的条件)、声音分离网络等四部分构成。
在这里插入图片描述
实验结果和相关方法比较:
在这里插入图片描述
从混合声音重分离出两个独立的声源:
在这里插入图片描述
数据集:MUSIC [52] and URMP [28].
video:https://www.youtube.com/watch?v=XDuKWUYfA_U

?LDTNet图像去雾,在图像去雾的同时估计了场景的投射图 (from 哈工程)
网络架构:
在这里插入图片描述
效果比较:
在这里插入图片描述
相关指标:airlight robustness evaluation (ARE), coefficient robustness evaluation (CRE), scale robustness evaluation (SRE) and noise robustness evaluation (NRE).
相关方法:DCP [17] CAP [34] MSCNN [24] DehazeNet [23] AOD-Net [25]

?暗光增强, (from 阿联酋人工智能感知研究院)
在这里插入图片描述
在这里插入图片描述
相关方法和数据集的比较:在这里插入图片描述
dataset: See-in-the-Dark (SID)dataset [3]

?基于单个自编码器实现照片的编码重建,并通过隐空间编码生成新的高清图像, (from 芬兰阿尔托大学 GenMind)
在这里插入图片描述
一些结果:
在这里插入图片描述
在这里插入图片描述
相关方法:PIONEER networks,IntroVAE
相关数据集:CELEBA-HQ LSUN Bedrooms dataset
code:https://aaltovision.github.io/balanced-pioneer

?基于合成数据识别珍稀物种, 通过不同位姿、光照、模型和模拟法探究了合成数据提升野外识别效果。(小样本学习)合成数据可有效降低错误率,提升精度。(from 加州理工 微软研究院)
四种合成方法与真实数据的比较:
在这里插入图片描述

?iWildCam数据集, 野外自动观察相机数据集,为了实现自动标注的挑战,包含了美国西南部143个地点的292732张图像(from 加州理工)
在这里插入图片描述
相关数据集:Caltech Camera Traps (CCT) dataset[19]
参考文献中有一堆合成方法和动物研究。

?PWOC-3D场景流估计方法, 从立体视觉图像序列中高效的预测出场景流(光流和立体匹配)、并学会如何处理遮挡场景。(from 德国AI研究中心DFKI)
在这里插入图片描述
金字塔层中的结构:
在这里插入图片描述
最终预测结果:
在这里插入图片描述

?

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值