在观察数据时,动态图像比静态图像更能反映出数据的趋势和特点。这篇文章记录了如何使用matplotlib进行动态图形绘制。
主要利用了animation类的api
1.matplotlib.animation
首先来画一条线,将一条线绘制的过程动态化:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation #导入负责绘制动画的接口
#其中需要输入一个更新数据的函数来为fig提供新的绘图信息
fig, ax = plt.subplots() #生成轴和fig, 可迭代的对象
x, y= [], [] #用于接受后更新的数据
line, = plt.plot([], [], '.-') #绘制线对象,plot返回值类型,要加逗号
#------说明--------#
#核心函数包含两个:
#一个是用于初始化画布的函数init()
#另一个是用于更新数据做动态显示的update()
def init():
#初始化函数用于绘制一块干净的画布,为后续绘图做准备
ax.set_xlim(-5, 15*np.pi) #初始函数,设置绘图范围
ax.set_ylim(-3, 3)
return line
def update(step): #通过帧数来不断更新新的数值
x.append(step)
y.append(np.cos(step/3)+np.sin(step**2)) #计算y
line.set_data(x, y)
return line
#fig 是绘图的画布
#update 为更新绘图的函数,step数值是从frames 传入
#frames 数值是用于动画每一帧的数据
ani = FuncAnimation(fig, update, frames=np.linspace(0, 13*np.pi, 128),
init_func=init,interval=20)
plt.show()
为了让程序在我们需要的帧数下停止而不是继续绘制,需要对上面的程序稍微修改,加入帧数限制:
fig, ax = plt.subplots()
x, y= [], []
line, = plt.plot([], []