【matplotlib】绘制动态图像

本文详细介绍使用matplotlib库创建动态图像的方法,包括线条动画、行波动画及二维波浪动画的绘制过程。通过实例演示了如何利用FuncAnimation和ArtistAnimation实现动画效果,适合初学者快速上手。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在观察数据时,动态图像比静态图像更能反映出数据的趋势和特点。这篇文章记录了如何使用matplotlib进行动态图形绘制。
主要利用了animation类的api

1.matplotlib.animation

首先来画一条线,将一条线绘制的过程动态化:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation   #导入负责绘制动画的接口
#其中需要输入一个更新数据的函数来为fig提供新的绘图信息

fig, ax = plt.subplots()          #生成轴和fig,  可迭代的对象
x, y= [], []    #用于接受后更新的数据
line, = plt.plot([], [], '.-')   #绘制线对象,plot返回值类型,要加逗号

#------说明--------#
#核心函数包含两个:
#一个是用于初始化画布的函数init()
#另一个是用于更新数据做动态显示的update()


def init():
	#初始化函数用于绘制一块干净的画布,为后续绘图做准备
    ax.set_xlim(-5, 15*np.pi)    #初始函数,设置绘图范围
    ax.set_ylim(-3, 3)
    return line

def update(step):           #通过帧数来不断更新新的数值
    x.append(step)
    y.append(np.cos(step/3)+np.sin(step**2))    #计算y
    line.set_data(x, y)
    return line

#fig 是绘图的画布
#update 为更新绘图的函数,step数值是从frames 传入
#frames 数值是用于动画每一帧的数据
ani = FuncAnimation(fig, update, frames=np.linspace(0, 13*np.pi, 128),
                    init_func=init,interval=20)

plt.show()

在这里插入图片描述
为了让程序在我们需要的帧数下停止而不是继续绘制,需要对上面的程序稍微修改,加入帧数限制:

fig, ax = plt.subplots() 
x, y= [], [] 
line, = plt.plot([], []
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值