题意:给定一个m*n的矩阵,0表示空地,1表示障碍,找出一个由空地组成的面积最大的子矩阵,输出最大面积乘以三。
思路:直接枚举的话复杂度无法承受,考虑用扫描法。对于每一个点(i, j)可以由三个参数表示,up[i][j]表示这个方块所能向上延伸的最长高度,left[i][j]表示在这个高度下这个方块所能向左延伸的最远格子标号,right[i][j]同理。那么对于这个矩形中的所有子矩形一定能由某一个位置的这三个参数描述,所以计算出每个格子所在处的由这三个参数组成的矩形面积,然后取最大值即可。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<ctime>
#define eps 1e-6
#define LL long long
#define pii pair<int, int>
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
const int MAXN = 1100;
//const int INF = 0x3f3f3f3f;
int m, n;
int G[MAXN][MAXN], up[MAXN][MAXN], lef[MAXN][MAXN], rig[MAXN][MAXN];
int main() {
//freopen("input.txt", "r", stdin);
int T; cin >> T;
while(T--) {
cin >> m >> n;
char tmp[3];
for(int i = 1; i <= m; i++) {
for(int j = 1; j <= n; j++) {
scanf("%s", tmp);
G[i][j] = tmp[0]=='F' ? 0 : 1;
}
}
int ans = 0;
for(int i = 1; i <= n; i++) rig[0][i] = n;
for(int i = 1; i <= m; i++) {
int leftmost = 1, rightmost = n;
for(int j = 1; j <= n; j++) {
if(G[i][j]) {
leftmost = j + 1;
lef[i][j] = up[i][j] = 0;
}
else {
up[i][j] = up[i-1][j] + 1;
lef[i][j] = max(leftmost, lef[i-1][j]);
}
}
for(int j = n; j; j--) {
if(G[i][j]) {
rightmost = j - 1;
rig[i][j] = n;
}
else rig[i][j] = min(rightmost, rig[i-1][j]);
ans = max(ans, (rig[i][j]-lef[i][j]+1)*up[i][j]);
//cout << up[i][j] << " " << lef[i][j] << " " << rig[i][j] << endl;
}
}
cout << ans * 3 << endl;
}
return 0;
}