【线性代数的本质】笔记

【线性代数的本质】

“线性代数的本质”是3blue1brown的视频,看了之后可以对线性代数有更多直观的理解。


序言

几何上的理解能让你判断出解决特定问题需要用什么样的工具,感受到他们为什么有用,以及如何解读最终结果,数值上的理解则能让你顺利应用这些工具。


矩阵与线性变换

矩阵的列向量可以看作是原空间的基向量经过变换后的形式。
矩阵的秩表示变换后列空间的维数。
这里写图片描述
上图中

[ac] [ a c ]
就是变换后x轴的基向量,而
[bd] [ b d ]
就是变换后y轴的基向量。那么原始空间的向量
[xy] [ x y ]
在变换后的空间就是 x[ac]+y[bd] x [ a c ] + y [ b d ]

非方阵

如果是非方阵例如3×2的矩阵M,那么原始空间的维度是2,经过该矩阵M表示的线性变换后,变为3维空间的一个平面,和原来的2维空间不在一个平面上了。所以这个矩阵的线性变换可以把2维空间变换到3维空间。

矩阵乘法

这里写图片描述
矩阵乘法相当于复合线性变换。
矩阵变换满足结合律,不满足交换律。


行列式

行列式表示矩阵代表的线性变换导致空间某个面积(或体积)的缩放比例。
这里写图片描述


逆矩阵/列空间/零空间

设线性方程组:

Ax⃗ =v⃗  A x → = v →

如果 det(A)0 d e t ( A ) ≠ 0 ,表示线性变换没有将空间挤压为体积为0(降维)。这时,可以通过做相反的变换 A1 A − 1 v⃗  v → 得到 x⃗  x → .
如果 det(A)=0 d e t ( A ) = 0 ,表示线性变换将空间压缩到更低维度上。这时逆变换不存在, A1 A − 1 不存在。但是解仍然可能存在,比如空间恰好压缩到 v⃗  v → 这条线上。
线性变换后的空间是矩阵的列空间。如果一个三维空间变换为一条线,则有一个平面被压缩为零向量,这个平面中向量构成零空间。


点积与对偶性

多维空间的一个向量可以看作多维空间到数轴的变换。这个向量称为变换的对偶向量。
向量的点积可以看作由多维空间到数轴的变换。
这里写图片描述


叉积

二维空间的叉积:

v⃗ ×w⃗ =det([v⃗  w⃗ ]) v → × w → = d e t ( [ v →   w → ] )
数值就是两个向量围成的平行四边形的面积。

三维空间的叉积:

  1. 根据 v⃗  v → w⃗  w → 定义一个三维到一维的线性变换
  2. 找到该变换的对偶向量
  3. 说明这个对偶向量就是 v⃗ ×w⃗  v → × w →
    这里写图片描述
    上图中的 f(xyz) f ( [ x y z ] ) 就是一个三维到一维的线性变换,它表示由 xyz [ x y z ] v⃗  v → w⃗  w → 围起来的平行六面体的体积。
    这里写图片描述
    可以说明存在一个向量 p⃗  p → 对应于线性变换 f(xyz) f ( [ x y z ] ) p⃗  p → 就是线性变换的对偶向量,而且可以通过 p⃗ =v⃗ ×w⃗  p → = v → × w → 计算得到 p⃗  p → .

基变换

这里写图片描述
如果 M M 是我们可见的空间的变换,而A表示从小明的角度转换到我们的空间的基变换矩阵,那么 A1MA A − 1 M A 就是M矩阵对应的变换在小明空间的对应形式。
假如小明空间的向量 v⃗  v → ,它进行 A1MA A − 1 M A 变换后,按照从右到左的顺序理解。 Av⃗  A v → 将向量 v⃗  v → 变换到我们所见的空间的坐标形式,然后 MAv⃗  M A v → Av⃗  A v → M M 矩阵对应的变换。然后A1将我们所见空间的向量 MAv⃗  M A v → 变换为小明空间的坐标形式。
所以 A1MA A − 1 M A 表示 M M 矩阵对应的变换在小明空间的矩阵。


特征向量与特征值

何为特征向量和特征值

矩阵M的特征向量 v⃗  v → 是经过 M M 对应的线性变换,依旧在原来直线(该向量张成的空间)上的向量。该特征向量对应的特征值可以认为是经过M线性变换, v⃗  v → 的放缩比例。
这里写图片描述

如何求解特征向量:

这里写图片描述
如果 det(AλI)0 d e t ( A − λ I ) ≠ 0 ,则 v⃗  v → 有且只有一个是零向量。只有当 det(AλI)=0 d e t ( A − λ I ) = 0 时,可以有非零解。

基向量是特征向量:

一组同样是特征向量的基向量构成的集合被称为一组特征基。
在这组特征基对应的坐标系中原矩阵的变换对应的是对角矩阵。
这里写图片描述


抽象向量空间

线性变换的严格定义:
这里写图片描述
求导也是线性运算。
这里写图片描述


轻松理解SVD

参考谈谈矩阵SVD分解

M=UΣVH M = U Σ V H
其中 M M 是要做SVD分解的矩阵,U,V是酉矩阵, VH V H 表示V的转置共轭矩阵, Σ Σ 是非负实数的对角矩阵。

数值上的理解:

MMH=UΣVHVΣHUH=UΣΣHUH M M H = U Σ V H V Σ H U H = U Σ Σ H U H

MHM=VΣHUHUΣVH=VΣHΣVH M H M = V Σ H U H U Σ V H = V Σ H Σ V H

所以 U,V U , V 分别是 MMH M M H MHM M H M 的特征向量组成的矩阵。(可以结合特征基理解)

几何上的理解:

酉矩阵代表旋转变换,对角矩阵代表缩放变换。(谈谈矩阵SVD分解)
那么SVD分解相当于把矩阵 M M 分解为一个旋转变换,然后再缩放变换,然后再旋转变换。如果我们只关注矩阵代表的每个特征强度,只需要关心缩放变换对应的矩阵Σ的元素大小即可。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值