特征向量和特征值

博客探讨了线性变换的性质,包括基向量、行列式和逆矩阵的概念。重点在于特征向量和特征值的解释,指出它们在变换后保持在原有空间并经历比例变化。还讨论了如何计算特征向量和特征值,以及它们在矩阵压缩空间时的作用。
摘要由CSDN通过智能技术生成

一、基向量和线性变换

1.在线性代数里,一个矩阵对应于一个线性变换

2.如基向量 \begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix},第一列代表基向量\underset{i}{\rightarrow},第二列代表基向量\underset{j}{\rightarrow}

3.当进行线性变换时,如 矩阵 \begin{bmatrix} 3 &2 \\ -2 & 1 \end{bmatrix},表示基向量\underset{i}{\rightarrow}变为 \begin{bmatrix} 3\\ -2 \end{bmatrix}\underset{j}{\rightarrow}变为 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值