poj 3233 Matrix Power Series

  考查矩阵乘法,加矩阵快速幂。

先构造矩阵res为  I    I ,I指单位矩阵,然后构造矩阵maxtri为 A   0

                            0   0                                                               I     I

所以相乘一次后 res*maxtri= A+I   I  ,在相乘一次就有了A^2+A+I     I

                                                0    0                                      0            0

这样规律就不难看出了,就是把res乘以A矩阵K次,就是一个快速幂的过程,最后的答案则只需减去一个单位矩阵即可。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=62;
int n,k,m;
int maxtri[N][N],tmp[N][N],res[N][N],tmp1[N][N];
void mul(int a[][N],int b[][N])
{
     int tp;
     for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        {
             tp=0;
             for(int t=1;t<=n;t++)
                tp=(tp+(a[i][t]*b[t][j])%m)%m;
             tmp[i][j]=tp;
        }
}
void modexp(int t)
{
    memcpy(tmp1,maxtri,sizeof(maxtri));
    while(t)
    {
        if(t&0x1)
        {
            mul(res,tmp1);
            memcpy(res,tmp,sizeof(tmp));
        }
        mul(tmp1,tmp1);
        memcpy(tmp1,tmp,sizeof(tmp));
        t>>=1;
    }
}
int main()
{
    cin>>n>>k>>m;
    memset(res,0,sizeof(res));
    memset(maxtri,0,sizeof(maxtri));
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        {
            cin>>maxtri[i][j];
            maxtri[i][j]%=m;
        }
    for(int i=1;i<=n;i++)
    {
        maxtri[i+n][i]=1;
        maxtri[i+n][i+n]=1;
        res[i][i]=1;
        res[i][i+n]=1;
    }
   n*=2;
   modexp(k);
   n/=2;
   for(int i=1;i<=n;i++)
    res[i][i]=(res[i][i]-1+m)%m;
   for(int i=1;i<=n;i++)
   {
       for(int j=1;j<=n;j++)
         cout<<res[i][j]<<" ";
        cout<<endl;
   }
    return 0;
}


以下是Java解决POJ3233矩阵幂序列问题的代码和解释: ```java import java.util.Scanner; public class Main { static int n, k, m; static int[][] A, E; public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); k = sc.nextInt(); m = sc.nextInt(); A = new int[n][n]; E = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { A[i][j] = sc.nextInt() % m; E[i][j] = (i == j) ? 1 : 0; } } int[][] res = matrixPow(A, k); int[][] ans = matrixAdd(res, E); printMatrix(ans); } // 矩阵乘法 public static int[][] matrixMul(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % m; } } } return c; } // 矩阵快速幂 public static int[][] matrixPow(int[][] a, int b) { int[][] res = E; while (b > 0) { if ((b & 1) == 1) { res = matrixMul(res, a); } a = matrixMul(a, a); b >>= 1; } return res; } // 矩阵加法 public static int[][] matrixAdd(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { c[i][j] = (a[i][j] + b[i][j]) % m; } } return c; } // 输出矩阵 public static void printMatrix(int[][] a) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(a[i][j] + " "); } System.out.println(); } } } ``` 解释: 1. 首先读入输入的n、k、m和矩阵A,同时初始化单位矩阵E。 2. 然后调用matrixPow函数出A的k次幂矩阵res。 3. 最后将res和E相加得到结果ans,并输出。 4. matrixMul函数实现矩阵乘法,matrixPow函数实现矩阵快速幂matrixAdd函数实现矩阵加法,printMatrix函数实现输出矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值