贝叶斯网络(笔记)

贝叶斯定理

几个概念:
1. 条件概率 P(A|B)=P(AB)P(B) ,指在事件B发生的条件下A发生的概率。
2. 联合概率:即A B同时发生的概率,即 P(A,B)=P(AB)=P(A|B)P(B)=P(B|A)P(A)
3. 边缘概率(又称先验概率),边缘概率是这样得到的:在联合概率中,把最终结果中那些不需要的事件通过合并成它们的全概率,而消去它们(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率),这称为边缘化。

贝叶斯公式:

P(A|B)=P(AB)P(B)

贝叶斯网络

概念:一种概率图模型。它是一种模拟人类推理过程中因果关系的不确定性处理模型,其网络拓朴结构是一个有向无环图(DAG)。 图中连接两个节点的箭头代表此两个随机变量是具有因果关系,或非条件独立。

把某个研究系统中涉及的随机变量,根据是否条件独立绘制在一个有向图中,就形成了贝叶斯网络

DAG中节点x的联合概率 P(x)=iIP(xi|parent(xi))

思考

既然已经知道了什么叫贝叶斯网络,那么如果需要回答基于贝叶斯网络上的概率问题,又该如何去解决呢?或者说是否有一套方法去解决DAG上的概率问题?

说的更加容易懂的话,就是如果这些随机变量不相互独立,且相互之间有因果关系,在给定训练集的情况下,如何通过随机变量的值去猜测类别?

众所周知,如果给定的随机变量都相互独立,要通过随机变量的值推测类别,直接使用朴素的贝叶斯算法就行了?

下面先了解几个概念:
D分离:判断DAG图中两个变量是否相互独立的方法。有三种形态的链,各自对应不同的结论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值