如题,在caffe训练时,遇到这个特殊的数字之后,loss会一直就是这个数字。
网上虽然有很多针对这个问题调参的trick,但少有详细的分析,因此,有必要研究一下caffe的源代码。
softmax的公式为
pk=exp(xk)∑iexp(xi)
其中x为softmax前一层的输出
softmax的loss计算公式也很简单,就是对softmax之后预测的概率做对数似然函数
loss=−∑kyklog(pk)
其中y是label,若类别数为N,则y为N维。对于单label情况,N维中只有一维为1,其他为零,计算loss时仅需考虑label中非零那一维即可(实际使用中单label用一个数字记录)
此时
loss=−log(P{k==label})
在softmax_loss_layer.cpp的原码中,就是由label的非零维直接计算loss的
- 1
- 2
- 1
- 2
loss的最大值由FLT_MIN得到,FLT_MIN定义为1.17549435E-38F,这个数字的自然对数正好就是
-87.3356,算loss时需要取负值,结果就能了87.3356。
这说明softmax计算得到概率值出现了零(由于float类型所能表示的最小数值是
10−38
,比这个值还小的无法表示,只能是零)
而softmax是用指数函数计算的,指数函数的值都是大于零的。因此,我们有理由相信,计算过程中出现了float溢出等异常,出现了inf,nan等异常数值导致softmax输出为零
最后我们发现,当softmax之前的feature值过大时,由于softmax先求指数,会超出float数据范围,成为inf。inf与其他任何数值的和都是inf,softmax在做除法时任何正常范围的数值除以inf都会变为0。然后求loss时log一下就出现了87.3356这样的值。
以下是模拟训练的loss代码,观察feature数值范围对loss的影响
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
解决方法:
知道了原因,解决时就能对症下药。总体上看,softmax输入的feature由两部分计算得到:一部分是输入数据,另部分是各层权重参数。
1、观察数据中是否有异常样本或异常label导致数据读取异常
2、调小初始化权重,以便使softmax输入的feature尽可能变小
3、降低学习率,这样就能减小权重参数的波动范围,从而减小权重变大的可能性。这条也是网上出现较多的方法。
4、如果有BN(batch normalization)层,finetune时最好不要冻结BN的参数,否则数据分布不一致时很容易使输出值变的很大。