理解deconvolution(反卷积、转置卷积)概念原理和计算公式、up-sampling(上采样)的几种方式、dilated convolution(空洞卷积)的原理理解和公式计算

本文详细介绍了反卷积(又称转置卷积)、上采样(包括双线性插值和反池化)以及空洞卷积的概念、计算公式和应用场景。在FCN图像分割网络中,deconv和up-sampling用于恢复feature map尺寸,而dilated conv则在不增加参数的情况下扩大卷积核的感受野。双线性插值作为上采样常用方法,因简单有效而被广泛应用。
摘要由CSDN通过智能技术生成


起初是看FCN图像分割论文的时候,看到论文中用到deconvolution和up-sampling,不是特别理解up-samping和deconv之间的关系,也不知道deconv是以一种怎么样计算过程完成的。所以就去搜了相关资料,同时了解了空洞卷积-dilated conv的原理,在此博客记录一下。


deconv(反卷积、转置卷积)

deconv和up-sampling是FCN图像分割网络中用到的两个扩大feature map尺寸的重要操作。因为在FCN全卷积网络中,其要实现的是一个图像分割的任务,在网络的前半部分,其通过卷积和池化层实现对输入图像的特征提取,一步步将feature map降到很小,然后对其每一个像素进行分类,在网络的后半段,FCN又通过up-samping将网络层前半段不同阶段的feature map进行上采样和反卷积操作(虽然FCN提到了deconv,但是其并没有用到,而是直接使用的up-sampling中的双线性插值直接对feature扩大几倍以达到恢复输入尺寸的效果),以将feature map复原到输入图像的尺寸大小,以此输出针对每一个像素分类后的分割图像。

很多人都将deconv反卷积称作转置卷积,但是好像也有说它们两者还是有一点区别,目前还不知道究竟有什么区别,所以我暂且先认为它俩的概念一致好了。

普通的卷积和池化


  • 计算feature_map输出尺寸的公式也比较简单,如下所示:
    在这里插入图片描述
    output:卷积后输出feature map的尺寸大小
    input:输入图像尺寸大小
    padding:在输入图像周围补圈数,padding=1表示在输入图像周围加一圈0
    kernel_size:卷积核的大小
    stride:卷积核在输入图像作卷积时每一次卷积移动的步长

  • 以图二为例:

input=5,padding=1,kernel_size=3,stride=2
output=(5+2x1-3)/2+1=3

  • No padding,no strides 图一

  • Padding,strides 图二

在这里插入图片描述


deconv(transposed conv)

deconv输入输出计算

deconv输出尺寸计算,就是将普通卷积的计算公式中的

  • 45
    点赞
  • 88
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
转置卷积,也称为反卷积Deconvolution)或分数步长卷积(Fractionally-Strided Convolution),是卷积神经网络中的一种常用操作,可用于上采样、图像分割、目标检测等任务中。 其基本思想是在卷积的过程中,将输入数据进行“展开”(Unfold),然后通过卷积核进行卷积操作,最终得到输出数据。而在转置卷积中,则是将输出数据进行“展开”,然后通过转置卷积核(也称为反卷积核)进行卷积操作,最终得到输入数据的近似值。 下面是转置卷积原理: 1. 对于卷积操作,输入数据 $x$ 经过卷积核 $k$ 得到输出数据 $y$: $$y = k \ast x$$ 其中,$\ast$ 表示卷积操作。 2. 对于转置卷积操作,输入数据 $x$ 经过转置卷积核 $k'$ 得到输出数据 $y'$: $$y' = k' \ast x$$ 其中,$\ast$ 表示卷积操作。 3. 转置卷积核的大小和卷积核的大小是相反的,即: $$k'_{i,j} = k_{j,i}$$ 其中,$k_{i,j}$ 表示卷积核的第 $i$ 行、第 $j$ 列的值,$k'_{i,j}$ 表示转置卷积核的第 $i$ 行、第 $j$ 列的值。 4. 转置卷积操作的步长和卷积操作的步长相同。 5. 转置卷积操作可以看作是对输出数据进行“展开”,然后通过转置卷积核进行卷积操作得到输入数据的近似值。 总之,转置卷积操作是将卷积操作反过来,将输出数据进行“展开”,然后通过转置卷积核进行卷积操作得到输入数据的近似值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值