理解deconvolution(反卷积、转置卷积)概念原理和计算公式、up-sampling(上采样)的几种方式、dilated convolution(空洞卷积)的原理理解和公式计算

本文详细介绍了反卷积(又称转置卷积)、上采样(包括双线性插值和反池化)以及空洞卷积的概念、计算公式和应用场景。在FCN图像分割网络中,deconv和up-sampling用于恢复feature map尺寸,而dilated conv则在不增加参数的情况下扩大卷积核的感受野。双线性插值作为上采样常用方法,因简单有效而被广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


起初是看FCN图像分割论文的时候,看到论文中用到deconvolution和up-sampling,不是特别理解up-samping和deconv之间的关系,也不知道deconv是以一种怎么样计算过程完成的。所以就去搜了相关资料,同时了解了空洞卷积-dilated conv的原理,在此博客记录一下。


deconv(反卷积、转置卷积)

deconv和up-sampling是FCN图像分割网络中用到的两个扩大feature map尺寸的重要操作。因为在FCN全卷积网络中,其要实现的是一个图像分割的任务,在网络的前半部分,其通过卷积和池化层实现对输入图像的特征提取,一步步将feature map降到很小,然后对其每一个像素进行分类,在网络的后半段,FCN又通过up-samping将网络层前半段不同阶段的feature map进行上采样和反卷积操作(虽然FCN提到了deconv,但是其并没有用到,而是直接使用的up-sampling中的双线性插值直接对feature扩大几倍以达到恢复输入尺寸的效果),以将feature map复原到输入图像的尺寸大小,以此输出针对每一个像素分类后的分割图像。

很多人都将deconv反卷积称作转置卷积,但是好像也有说它们两者还是有一点区别,目前还不知道究竟有什么区别,所以我暂且先认为它俩的概念一致好了。

普通的卷积和池化


  • 计算feature_map输出尺寸的公式也比较简单,如下所示:
    在这里插入图片描述
    output:卷积后输出feature map的尺寸大小
    input:输入图像尺寸大小
    padding:在输入图像周围补圈数,padding=1表示在输入图像周围加一圈0
    kernel_size:卷积核的大小
    stride:卷积核在输入图像作卷积时每一次卷积移动的步长

  • 以图二为例:

input=5,padding=1,kernel_size=3,stride=2
output=(5+2x1-3)/2+1=3

  • No padding,no strides 图一

  • Padding,strides 图二

在这里插入图片描述


deconv(transposed conv)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值