1.题目描述:点击打开链接
2.解题思路:本题利用唯一分解定理及n!的指数的计算公式解决。可以想象,如果我们把m写成若干个素数乘积的形式,那么m^k就相当于对每一个素数的指数都乘上k。因此k实际上取决于幂次最大的那个素数。
那么如何求解p^k'恰好整除n!时候的指数呢?可以利用数论中的定理k'=[n/p]+[n/p^2]+[n/p^3]+...。由于后面无穷项都是0,因此这是一个有限值,可以通过循环来计算出。这样,得到了m,那么k=k'/β,其中β是m的唯一分解式中素因子p对应的指数。最终ans=min(ans,k)。如果ans==0,那就是无法分解。
3.代码:
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<algorithm>
#include<string>
#include<sstream>
#include<set>
#include<vector>
#include<stack>
#include<map>
#include<queue>
#include<deque>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> P;
typedef pair<long long, long long> PL;
#define me(s) memset(s,0,sizeof(s))
#define For(i,n) for(int i=0;i<(n);i++)
const int INF = 100000000;
int main()
{
//freopen("t.txt", "r", stdin);
int T;
scanf("%d", &T);
int rnd = 0;
while (T--)
{
int m, n;
scanf("%d%d", &m, &n);
int i = 2;//枚举第一个素数
int ans = INF;
while (m != 1)//分解m
{
int p = 0;
while (m%i == 0){
m /= i;
p++;//p表示素因子i的指数
}
if (p){
int num = n;
int tmp = 0;
while (num){//利用循环计算恰好整除n!的指数tmp
tmp += num / i;
num /= i;
}
ans = min(ans, tmp / p);//取较小者
}
i++;//枚举下一个素因子
}
printf("Case %d:\n", ++rnd);
if (ans)printf("%d\n", ans);
else puts("Impossible to divide");
}
return 0;
}