幂和阶乘 UVa10780

1.题目描述:点击打开链接

2.解题思路:本题利用唯一分解定理及n!的指数的计算公式解决。可以想象,如果我们把m写成若干个素数乘积的形式,那么m^k就相当于对每一个素数的指数都乘上k。因此k实际上取决于幂次最大的那个素数。

那么如何求解p^k'恰好整除n!时候的指数呢?可以利用数论中的定理k'=[n/p]+[n/p^2]+[n/p^3]+...。由于后面无穷项都是0,因此这是一个有限值,可以通过循环来计算出。这样,得到了m,那么k=k'/β,其中β是m的唯一分解式中素因子p对应的指数。最终ans=min(ans,k)。如果ans==0,那就是无法分解。

3.代码:

#define _CRT_SECURE_NO_WARNINGS 
#include<iostream>
#include<algorithm>
#include<string>
#include<sstream>
#include<set>
#include<vector>
#include<stack>
#include<map>
#include<queue>
#include<deque>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<functional>
using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> P;
typedef pair<long long, long long> PL;
#define me(s) memset(s,0,sizeof(s))
#define For(i,n) for(int i=0;i<(n);i++)

const int INF = 100000000;

int main()
{
	//freopen("t.txt", "r", stdin);
	int T;
	scanf("%d", &T);
	int rnd = 0;
	while (T--)
	{
		int m, n;
		scanf("%d%d", &m, &n);
		int i = 2;//枚举第一个素数
		int ans = INF;
		while (m != 1)//分解m
		{
			int p = 0;
			while (m%i == 0){
				m /= i;
				p++;//p表示素因子i的指数
			}
			if (p){
				int num = n;
				int tmp = 0;
				while (num){//利用循环计算恰好整除n!的指数tmp
					tmp += num / i;
					num /= i;
				}
				ans = min(ans, tmp / p);//取较小者
			}
			i++;//枚举下一个素因子
		}
		printf("Case %d:\n", ++rnd);
		if (ans)printf("%d\n", ans);
		else puts("Impossible to divide");
	}
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值