1.题目描述:点击打开链接
2.解题思路:本题就是Eulerian Number,《具体数学》中有讲解。也可参考维基百科中的链接:点击打开链接 设f(n,k)表示1~n的排列中有k个欧拉数的方案数。那么有如下递推式:
f(n,k)=(1+k)*f(n-1,k)+(n-k)*f(n-1,k-1);
不含n的排列中:如果在该排列的升序或者该排列的开始位置插入n,那么k值不变。如果在降序或者最后位置插入n,那么k变成k+1。当f(n-1,k)时候,共有k个升序位置和开始位置可以插入n,使得k不变,当为f(n-1,k-1)的时候,共有n-k-1个降序位置,加上一个结尾位置共有n-k个位置可以插入n,使得k-1变成k。
3.代码:
#include<iostream>
#include<algorithm>
#include<cassert>
#include<string>
#include<sstream>
#include<set>
#include<bitset>
#include<vector>
#include<stack>
#include<map>
#include<queue>
#include<deque>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<cctype>
#include<complex>
#include<functional>
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
#define rep(i,n) for(int i=0;i<(n);i++)
#define me(s) memset(s,0,sizeof(s))
#define pb push_back
#define lid (id<<1)
#define rid (id<<1|1)
typedef long long ll;
typedef pair<int,int> P;
const int N=1000+10;
const int MOD=1000000007;
ll f[N][N];
void init()
{
f[1][0]=1;
f[1][1]=0;
for(int i=2;i<1001;i++)
{
f[i][0]=1;
f[i][i]=0;
for(int j=1;j<i;j++)
f[i][j]=((1+j)*f[i-1][j]+f[i-1][j-1]*(i-j))%MOD;
}
}
int main()
{
int n,k;
init();
while(~scanf("%d%d",&n,&k))
{
printf("%lld\n",f[n][k]);
}
}

本文介绍了一种计算特定排列下欧拉数方案数量的方法,即欧拉数(EulerianNumber)的计算。通过递推公式实现了高效的计算,并提供了完整的C++代码实现。
1万+

被折叠的 条评论
为什么被折叠?



