python实现决策树算法
摘要:本文首先对决策树算法进行简单介绍,然后利用python一步步构造决策树,并通过matplotlib工具包直观的绘制树形图,最后在数据集对算法进行测试。
关键词:机器学习,决策树,python,matplotlib
简介
决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。[决策树算法百度百科]
决策树的形式如下图所示:
决策树很多任务都是为了获取数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,从而对外部未知信息进行预测归类。
决策树的构造
在构造决策树时,需要考虑的第一个问题就是,当前数据集上的特征该如何划分。划分数据集的原则也是将无序的数据变得更加有序。首先了解几个概念:
1、符号xi的信息:
其中p(xi)是选择该分类的概率。
2、熵(entropy):信息的期望值
3、信息增益(information gain)
在划分数据集之前之后信息发生的变化称为信息增益,计算每个特征值划分数据集获得的信息增益,获得信息增益最高的特征就是最好的选择。
编程实现决策树算法:
香农熵计算:
input — dataSet 为一个列表
def calcShannonEnt(dataSet):
"""计算香农熵"""
numEntries = len(dataSet)
labelCounts={}
for featVec in dataSet:
currentLabel = featVec[-1]
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0 #先令对应键值为0
labelCounts[currentLabel] +=1
ShannonEnt = 0.0
for key in labelCounts: # 遍历所有键值
prob = float(labelCounts[key]) / numEntries
ShannonEnt -= prob * math.log(prob,2)
return ShannonEnt
创建数据集:
def createData():
"""创建数据集"""
dataSet = [[1,1,'yes'],
[1,1,'yes'],
[1,0,'no'],
[0,1,'no'],
[0,1,'no']]
# dataSet = [[1,1,2,'yes'],
# [1,0,1,'yes'],
# [0,0,3,'no'],
# [1,1,3,'bad'],
# [2,2,3,'no']]
labels = ['no surfacing','flippers']
return dataSet,labels
得到熵之后,我们就可以按照获取最大增益的办法划分数据集。
`划分数据集
信息增益表示的是信息的变化,而信息可以用熵来度量,所以我们可以用熵的变化来表示信息增益。而获得最高信息增益的特征就是最好的选择,故此,我们可以对所有特征遍历,得到最高信息增益的特征加以选择。
def splitDataSet(dataSet,axis,value):
"""
:param dataSet:待划分的数据集
:param axis:划分数据集的特征,也就是每一列
:param value:特征返回值(是一列,2,3?,也就特征的索引)
:return:retDataSet=[]
"""
retDataSet=[]
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[0:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
接下来遍历整个数据集,循环计算香农熵和splitDataSet()函数,找到最好的划分方式:
def chooseBestFeatureToSplit(dataSet):
"""计算信息增益,选择最好的类别进行划分"""
numFeature=len(dataSet[0]) - 1# 特征个数
baseEntropy = calcShannonEnt(dataSet) # 基础信息熵
bestInfoGain = 0
bestFeature = -1 #选取最好的特征进行划分,也就是按照最大信息增益方法划分数据集
for i in range(numFeature):#遍历每个特征
featList = [example[i] for example in dataSet]#遍历一个特征中的所有属性
uniqueVals = set(featList)# 集合属性,也就是一个特征中的所有属性
newEntropy = 0.0
for value in uniqueVals: # 计算每个特征中每个属性的信息增益
subDataSet = splitDataSet(dataSet,i,value) #
prob = len(subDataSet) / float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if infoGain >bestInfoGain:
bestInfoGain=infoGain
bestFeature = i
return bestFeature
递归构建决策树:
def createTree(dataSet,labels):
classList = [example[-1] for example in dataSet] #['yes', 'yes', 'no', 'no', 'no']
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) ==1:
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)#选择最好的第i个特征进行划分
bestFeatLabel=labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat]) # 删除已划分节点
featValues = [example[bestFeat] for example in dataSet]#遍历最好特征下的属性
uniqueVals = set(featValues)# 得到列表包含的所有属性值
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,bestFeat,value),subLabels)#递归画树
return myTree
测试结果:
至此,就可以由已知的数据集构造一支决策树了。
下面将介绍如何使用matplotlib工具包可视化生成的决策树。
Matplotlib注释绘制树形图matplotlib学习网站
#首先定义文本框和箭头的格式:
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")
#绘制树节点
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
xytext=centerPt, textcoords='axes fraction',
va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)
#添加注释
def plotMidText(cntrPt,parentPr,txtString):
xMid = (parentPr[0] - cntrPt[0]/2) + cntrPt[0]
yMid = (parentPr[1] - cntrPt[1]/2) + cntrPt[1]
createPlot.ax1.text(xMid,yMid,txtString,va='center',ha='center',rotation=30)
#绘制树结构
def plotTree(myTree,parentPt,nodeTxt):
numLeafs = getNumLeafs(myTree)
depth = getTreeDepth(myTree)
#firstStr = myTree.keys()[0]
firstSides = list(myTree.keys())
firstStr = firstSides[0]
cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW,plotTree.yOff)
plotMidText(cntrPt,parentPt,decisionNode)
plotNode(firstStr, cntrPt, parentPt, decisionNode)
secondDict = myTree[firstStr]
plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict': # test to see if the nodes are dictonaires, if not they are leaf nodes
plotTree(secondDict[key], cntrPt, str(key)) # recursion
else: # it's a leaf node print the leaf node
plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalW
plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD
#获取叶子节点个数
def getNumLeafs(myTree):
numLeafs = 0
#firstStr = myTree.keys()[0]
firstSides = list(myTree.keys())
firstStr = firstSides[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
numLeafs += getNumLeafs(secondDict[key])
else: numLeafs +=1
return numLeafs
#获取树的深度
def getTreeDepth(myTree):
maxDepth = 0
#firstStr = myTree.keys()[0]
firstSides = list(myTree.keys())
firstStr = firstSides[0]
#print(firstStr)
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__ =='dict':
thisDepth = 1+ getTreeDepth(secondDict[key])
else:
thisDepth = 1
if thisDepth > maxDepth :
maxDepth = thisDepth
return maxDepth
#绘制树结构
def createPlot(inTree):
fig = plt.figure(1,facecolor='white')
fig.clf()
axprops = dict(xticks=[],yticks=[])
createPlot.ax1 = plt.subplot(111,frameon=False,**axprops)
plotTree.totalW = float(getNumLeafs(inTree))
plotTree.totalD = float(getTreeDepth(inTree))
plotTree.xOff = -0.5 / plotTree.totalW
plotTree.yOff = 1.0
plotTree(inTree,(0.5,1.0),'')
plt.show()
可视化结果:
小结
- 了解信息、熵、信息增益等概念,编程实现决策树算法
- 学习树的递归生成方法,以及如何编程实现获取树的深度、叶子节点的个数
- matplotlib工具包的应用,数据的可视化。
以上是我在学习过程中的一些理解与总结,难免有错,望大家不吝指教~
参考文献
[1].PeterHarrington, 哈林顿, 李锐. 机器学习实战[M]. 人民邮电出版社, 2013.