u8v9w0x1y
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
31、AI助力人机通信实现阿尔茨海默病早期检测
本文探讨了AI驱动的人机通信在阿尔茨海默病(AD)早期检测中的应用潜力。通过综述现有研究,分析了传统认知测试与生物标志物检测的局限性,并强调基于言语和非言语交流的非侵入性评估方法的优势。文章重点介绍了Pepper、Qbo、NAO和Giraff等机器人在多模态数据收集中的作用,以及AI技术如自然语言处理和深度学习在特征提取与模型构建中的关键机制。同时,提出了未来发展方向,包括开发自适应人机交互系统、整合先进AI算法、建立大样本评估模型及适配非母语者需求的跨文化设计。尽管当前研究仍处于初期阶段且受限于小样本规模原创 2025-09-29 00:56:28 · 39 阅读 · 0 评论 -
30、基于混合机器学习的肺部结节早期诊断技术
本文提出了一种基于混合机器学习(EPC-HML)的肺部结节早期诊断技术,结合自适应乌鸦群优化模型(ACS-ML)、高阶波束搜索优化(HBS)和半模块卷积神经网络(SM-CNN),实现对CT图像中良恶性结节的自动分割、特征提取与分类。该技术在LIDC-IDRI和FAH-GMU数据集上验证,表现出优于现有方法的准确率、灵敏度、特异性和AUC。未来将通过提升特征学习能力、应用迁移学习、降低计算成本及增强小结节检测能力进一步优化系统性能,具有重要的临床辅助诊断和大规模筛查应用前景。原创 2025-09-28 12:39:38 · 17 阅读 · 0 评论 -
29、新冠疫苗推文情感分析与肺癌结节早期诊断技术
本文探讨了新冠疫苗相关推文的情感分析与肺癌结节早期诊断技术。在情感分析部分,利用Pattern和VADER工具对Covaxin、Moderna和Sputnik V疫苗的公众情绪进行评估,结果显示整体态度偏积极或中立,负面情绪多源于副作用和外交因素。在医学诊断方面,提出一种结合ACS-ML、HBS算法与SM-CNN的混合机器学习模型,用于肺结节的分割、特征提取与分类,实验表明该方法在准确性、召回率和F1分数上优于传统模型,具有较高的临床应用潜力。未来工作将聚焦于数据集扩展、模型优化及跨领域融合研究。原创 2025-09-27 10:34:07 · 16 阅读 · 0 评论 -
28、AI 赋能的疫苗相关推特数据情感分析
本文基于2021年关于COVID-19疫苗的推特数据,利用AI技术进行情感分析,探讨公众对辉瑞、阿斯利康、科兴等疫苗的态度。研究采用VADER和Pattern两种情感分析工具,结合机器学习与深度学习方法,对数据进行预处理、探索性分析及整体与单疫苗情感分析。结果表明,大多数推特情感为中性,积极情绪主要表达感激,消极情绪则关注副作用、成本和政策等问题。分析还显示VADER对消极情感更敏感,而Pattern可有效区分极性和主观性。该研究为疫苗推广和公共卫生决策提供了数据支持。原创 2025-09-26 14:16:53 · 13 阅读 · 0 评论 -
27、医疗数据的机器学习分析与COVID-19疫苗情感洞察
本文探讨了机器学习在医疗数据中的应用,特别是利用逻辑回归模型对患者中风风险进行预测,展示了高准确率的预测效果,并分析了心脏病史、平均血糖水平等关键影响因素。同时,文章还介绍了通过自然语言处理技术对推特数据进行情感分析,以洞察公众对不同COVID-19疫苗的情绪态度。结合VADER、Pattern等工具,揭示了知识水平、宗教信仰和社会背景对疫苗接受度的影响,并提出了加强科普宣传和提高疫苗可及性的建议。最后总结了两大领域的优势、挑战与未来发展方向。原创 2025-09-25 10:53:25 · 14 阅读 · 0 评论 -
26、人工智能与机器学习在医疗保健行业的应用
本文深入探讨了人工智能和机器学习在医疗保健行业的广泛应用,涵盖聊天机器人、医疗实验室机器人、手术辅助、医疗图像诊断及AI赋能的健康伴侣等场景。重点介绍了基于机器学习的智能医疗解决方案框架,并以逻辑回归算法为例,详细展示了其在中风预测中的实现过程,包括数据预处理、模型训练、评估与调参。通过Kaggle真实数据集的案例研究,验证了ML在疾病预测中的有效性。文章还展望了多模态数据融合、个性化医疗、智能设备普及和医疗知识图谱等未来发展方向,全面呈现了AI/ML技术对提升医疗服务效率与质量的巨大潜力。原创 2025-09-24 16:17:15 · 10 阅读 · 0 评论 -
25、睡眠健康与智能医疗助手:AI与ML的应用洞察
本文探讨了睡眠健康与智能医疗助手在人工智能和机器学习技术推动下的应用与发展。重点分析了自动睡眠分期的研究进展、机器学习算法在医疗预测中的应用,并以中风预测为例展示了逻辑回归模型的实际操作流程。同时,文章介绍了智能医疗助手的构建框架、多领域应用场景及面临的挑战与解决方案,展望了未来智能医疗在个性化健康管理中的广阔前景。原创 2025-09-23 12:40:07 · 9 阅读 · 0 评论 -
24、自动化睡眠阶段检测方法研究与实验分析
本文介绍了一种基于EEG信号的自动化睡眠阶段检测方法,通过C3-A2单通道脑电信号进行时间与频率域特征提取,并结合特征选择技术与SVM分类器实现睡眠分期。研究采用ISRUC-Sleep数据集,涵盖三类受试者(有睡眠问题者、重复记录者及健康对照组),实验结果表明该方法在多个性能指标上表现优异,尤其在准确率方面达到97.73%,优于现有部分研究,为睡眠质量评估和相关疾病诊断提供了有效的技术支撑。原创 2025-09-22 15:29:38 · 12 阅读 · 0 评论 -
23、睡眠分期系统:从基础到实验研究
本文系统介绍了睡眠分期的基础知识、睡眠结构与阶段特征,以及基于单通道EEG信号的实验研究。通过分析ISRUC-sleep数据集,比较了SVM和KNN算法在睡眠阶段分类中的性能,结果显示SVM具有更高的准确率和Cohen's kappa值。研究强调了健康睡眠模式的特征,并探讨了其在医疗诊断、健康监测和科研中的应用价值,为未来睡眠障碍的智能识别与干预提供了技术参考。原创 2025-09-21 14:56:47 · 11 阅读 · 0 评论 -
22、早期阶段贝叶斯估计威布尔分布在医疗系统中的应用
本文提出一种基于贝叶斯估计与威布尔分布的早期阶段预测方法,用于医疗系统中的生存分析,特别针对糖尿病视网膜病变数据集。该方法结合Kaplan-Meier技术处理删失数据,并通过先验概率外推增强朴素贝叶斯和树增强朴素贝叶斯模型,实现在事件发生信息有限的情况下对患者视力丧失等事件的高效早期预测。实验结果表明,所提方法在AUC、准确率和F-度量等指标上优于传统贝叶斯模型,尤其在研究初期事件数据稀少时表现更优,具有良好的可解释性和应用前景。未来工作将拓展至多种删失类型及其他概率分布模型。原创 2025-09-20 10:49:05 · 12 阅读 · 0 评论 -
21、糖尿病视网膜病变早期视力丧失预测中的高级贝叶斯威布尔估计
本研究提出一种基于威布尔分布的高级贝叶斯系统,用于糖尿病视网膜病变早期视力丧失的预测。通过结合贝叶斯模型与生存分析,利用Kaplan-Meier估计器处理删失数据,实现对有限时间-事件信息下的有效插补与预测。实验结果表明,所提方法在AUC、准确率和F-测度等指标上优于传统模型,尤其TAN模型表现最佳,展现出在早期视力风险预警中的潜力,有助于降低糖尿病患者失明风险。原创 2025-09-19 11:50:51 · 11 阅读 · 0 评论 -
20、基于深度学习的脑肿瘤分类研究
本研究探讨了基于深度学习的脑肿瘤分类方法,比较了多种卷积神经网络(CNN)模型如ResNet50、EfficientNetB0、DenseNet121和MobileNetV3-Small在脑肿瘤MR图像分类中的性能。通过引入迁移学习、数据增强和Canny边缘检测等技术,提升了模型在小数据集上的泛化能力。采用多模型特征融合策略,并结合主成分分析进行降维,最终在多个数据集上实现了高达98%的分类准确率,显著优于单一模型表现。实验结果表明,融合模型在胶质瘤、脑膜瘤、垂体瘤及无肿瘤四类分类任务中具有优越性能,为临床原创 2025-09-18 09:12:37 · 14 阅读 · 0 评论 -
17、深度学习助力脑部疾病诊断
本文综述了深度学习在脑部疾病诊断中的应用进展,涵盖脑肿瘤、阿尔茨海默病、帕金森病和偏头痛等常见疾病的深度学习诊断方法。文章介绍了基于MRI和EEG的深度学习模型,分析了不同网络架构的特点及研究表现,并通过对比表格展示了各类模型的准确率、敏感性和特异性。同时,探讨了深度学习在医疗领域面临的挑战,如数据质量、模型可解释性与跨学科合作难题,并提出了未来发展方向,包括数据共享、模型优化和国际合作。研究表明,深度学习在提升脑部疾病诊断效率与准确性方面具有巨大潜力,为精准医学的发展提供了有力支持。原创 2025-09-15 15:29:00 · 15 阅读 · 0 评论 -
16、利用人工智能诊断脑部疾病的智能方法
本文探讨了利用人工智能技术,特别是深度学习方法,在脑部疾病诊断中的应用。通过分析脑电图(EEG)和磁共振成像(MRI)等非侵入性技术获取的脑部数据,结合卷积神经网络(CNN)等模型,实现对癫痫、阿尔茨海默病、帕金森病等常见脑部疾病的自动检测与分类。文章详细介绍了MRI的物理原理、成像序列及伪影问题,阐述了深度学习在医学成像和EEG信号处理中的关键作用,并展示了从数据预处理到诊断输出的整体流程,展望了人工智能在神经疾病诊疗中的广阔前景。原创 2025-09-14 14:56:34 · 10 阅读 · 0 评论 -
15、医疗领域的机器学习技术:从超参数调整到强化学习应用
本文探讨了机器学习在医疗领域的关键技术与应用,重点分析了超参数调整对模型优化的重要性以及强化学习在动态治疗方案、医学诊断、医疗资源调度、药物研发和健康管理中的潜力。同时,文章指出了强化学习在医疗领域面临的挑战,如数据稀缺、部分可观测性和奖励机制设计难题,并通过美国医疗保险数据的案例研究展示了数据驱动决策的实际价值。随着技术进步和数据积累,机器学习有望显著提升医疗服务的质量与效率。原创 2025-09-13 15:52:25 · 11 阅读 · 0 评论 -
13、基于机器学习的糖尿病预测与智能医疗应用
本文探讨了基于机器学习的糖尿病预测模型构建过程,涵盖数据预处理、探索性数据分析、特征相关性分析、特征工程、模型开发与评估等关键步骤。通过集成LGBM、GBM和Random Forest分类器并进行超参数调优,实现了90.3%的准确率,优于单一模型表现。文章还分析了机器学习在智能医疗中的广泛应用,包括疾病诊断、动态治疗方案制定和医疗资源优化,并讨论了多模态数据融合、个性化医疗及物联网结合等未来发展趋势,同时指出了数据隐私、算法可解释性和人才短缺等挑战及其应对策略。原创 2025-09-11 12:51:25 · 10 阅读 · 0 评论 -
12、皮肤癌与糖尿病预测的深度学习与机器学习方法
本文探讨了深度学习与机器学习在皮肤癌诊断和2型糖尿病预测中的应用。针对皮肤癌,采用五层卷积神经网络(CNN)对HAM10000数据集进行训练,通过数据增强和预处理实现88.8%的验证精度。对于糖尿病预测,基于Pima印第安人数据集,结合数据预处理、特征工程与多种机器学习算法(如随机森林、梯度提升),并通过模型集成与超参数调优提升预测性能。研究展示了AI技术在医疗健康领域的巨大潜力,为疾病早期筛查提供了高效可靠的解决方案。原创 2025-09-10 10:51:53 · 12 阅读 · 0 评论 -
11、利用深度学习实现皮肤镜图像中皮肤癌的七级自动分期诊断
本文提出了一种基于深度学习卷积神经网络(CNN)的皮肤镜图像自动分类框架,用于实现皮肤癌的七级自动分期诊断。利用公开的HAM10000数据集,通过图像预处理、数据增强和类权重调整解决数据不平衡问题,并构建CNN模型进行七类皮肤病变分类。实验结果显示,模型在预处理后的数据上分类准确率达到88.8%,优于传统机器学习方法。文章详细介绍了CNN架构、预处理流程、性能评估方法及未来改进方向,展示了深度学习在皮肤癌早期诊断中的巨大潜力。原创 2025-09-09 12:40:56 · 14 阅读 · 0 评论 -
10、机器学习技术在COVID - 19流行病学中的应用洞察
本文探讨了机器学习和深度学习技术在COVID-19流行病学中的广泛应用,涵盖疫苗决策、再感染风险分析、疫情预测、患者风险识别、免疫反应研究及疫苗开发等多个方面。文章比较了监督式与非监督式算法的应用优势,展示了机器学习在疫情防控中的关键作用,并强调了多领域协作和持续研究的重要性,展望了未来技术在全球公共卫生应对中的潜力。原创 2025-09-08 11:59:20 · 13 阅读 · 0 评论 -
9、新冠疫情流行病学中的机器学习技术洞察
本文深入探讨了机器学习技术在新冠疫情流行病学中的广泛应用,涵盖疫情的地理分布、疾病轨迹预测、传播动力学分析、临床特征识别及免疫反应评估等方面。通过多个研究案例和表格总结,展示了机器学习在处理海量医疗数据、精准预测疫情趋势、辅助临床诊断与防控决策中的显著优势。同时,文章也分析了当前面临的挑战,如数据质量、模型可解释性及对新变种的适应性,并展望了未来持续优化模型、多学科融合与全球数据共享的发展方向,强调机器学习在应对公共卫生危机中的关键作用。原创 2025-09-07 14:29:53 · 20 阅读 · 0 评论 -
8、机器学习技术在 COVID - 19 流行病学中的应用洞察
本文探讨了机器学习技术在COVID-19流行病学研究中的应用。从疾病的地理分布、传播动态、临床特征到免疫反应和再次感染风险,机器学习通过分析海量数据,提升了疫情趋势预测的准确性,并支持个性化防控策略的制定。文章还概述了机器学习在数据驱动下的建模流程,强调其在实时监测、多学科融合和未来公共卫生应对中的重要作用,同时指出了数据质量与模型可解释性等挑战,展望了技术深度融合的发展方向。原创 2025-09-06 10:50:36 · 15 阅读 · 0 评论 -
7、医疗系统中的机器学习与人工智能应用解析
本文深入探讨了机器学习与人工智能在医疗系统中的应用,涵盖模型验证流程、主流AI技术提供商及其服务、医疗聊天机器人的功能对比,以及人工智能在肿瘤学等领域的实际案例。文章分析了AI对医生角色的影响,强调其增强而非替代的潜力,并讨论了数据隐私、伦理挑战及应对策略。最后展望了数据驱动的精准医疗、多模态融合和智能设备普及等未来趋势,呼吁技术、医疗与政策多方协作,推动医疗AI良性发展。原创 2025-09-05 10:33:41 · 13 阅读 · 0 评论 -
6、人工智能在医疗保健系统中的应用与发展
本文探讨了人工智能在医疗保健系统中的广泛应用,涵盖放射诊断、病理学、眼科和心脏病学等多个专业领域,展示了AI在提升诊断准确性、优化治疗方案和改善患者护理方面的潜力。同时,文章分析了AI在医疗应用中面临的挑战,如数据偏差、模型可解释性与公平性问题,并提出了系统的模型开发与验证框架,包括数据处理流程、风险分层机制及多维度验证策略。最后强调,通过跨学科合作与严谨的技术评估,AI有望成为推动医疗系统向精准化、智能化发展的关键力量。原创 2025-09-04 09:43:48 · 17 阅读 · 0 评论 -
5、人工智能在医疗保健中的应用与影响
本文深入探讨了人工智能在医疗保健领域的应用与影响,涵盖专业支持、绩效指标、诊断与治疗应用、医疗推断、公众恐惧与期望等方面。文章分析了人工智能带来的效率提升、药物研发加速、疾病预测等七大优势,同时指出其在取代医生、隐私保护、自主决策等方面的局限性。文中还讨论了当前面临的挑战如数据质量、技术集成、伦理法律问题,并提出应对策略。通过实际案例和未来趋势分析,展示了人工智能在个性化医疗、远程监测、智能研发等领域的发展潜力。最后强调,在推动技术创新的同时,必须保障人类核心地位、患者隐私与社会伦理,实现医疗可持续发展。原创 2025-09-03 15:22:41 · 19 阅读 · 0 评论 -
3、人工智能在医疗领域的应用与挑战
本文全面探讨了人工智能在医疗领域的应用与挑战。内容涵盖中风检测、老年人健康监测、心率监测、糖尿病视网膜病变诊断等多个应用场景,并深入分析了AI在医疗影像诊断和临床决策支持中的实际案例。同时,文章也指出了AI在医疗中面临的数据隐私、算法偏见、伦理问题和社会影响等挑战,并提出了加强数据管理、消除偏见、促进人机协作和完善法律框架等应对策略。最后展望了人工智能在推动医疗智能化、精准化发展中的广阔前景。原创 2025-09-01 09:55:12 · 16 阅读 · 0 评论 -
1、人工智能在智能医疗系统中的挑战、原则与应用
本文探讨了人工智能在智能医疗系统中的应用、挑战与未来发展趋势。从提高诊断准确性、实现个性化医疗到优化医疗管理,AI正逐步改变现代医学的面貌。文章详细分析了AI在癌症诊断、疾病预测和手术辅助等领域的实际应用,并指出了数据整合、法规滞后、算法偏差和人类接受度等方面的挑战。同时提出了加强数据管理、完善政策监管、提升算法可解释性等应对策略。最后展望了多模态数据融合、智能设备普及和AI与其他技术协同发展的趋势,强调推动AI与医疗深度融合以实现高效、安全、以人为本的智能医疗体系。原创 2025-08-30 09:34:18 · 11 阅读 · 0 评论