u8v9w0x1y
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
33、光子技术在神经形态计算中的应用与进展
本文综述了光子技术在神经形态计算中的应用与最新进展,涵盖了光子神经元与突触的基础原理、储层计算与卷积神经网络等架构类型,并介绍了基于微环谐振器、相变材料和集成光子器件的关键技术。文章还分析了光子神经形态计算的硬件实现平台、算法优化方法、安全可靠性保障以及在图像和语音识别中的应用案例,探讨了当前面临的兼容性、安全性和资源优化等挑战,展望了未来在性能提升、集成化发展和跨领域应用方面的潜力。原创 2025-10-02 03:09:59 · 17 阅读 · 0 评论 -
32、机器学习在硬件安全与光子神经形态计算中的应用
本文探讨了机器学习在硬件安全与光子神经形态计算中的应用。在硬件安全方面,重点介绍了设计优化算法、监督与无监督学习方法,并详细阐述了基于机器学习的硬件木马检测流程及技术比较,涵盖逆向工程、电路特征分析和侧信道分析等策略。在光子神经形态计算领域,概述了其受生物大脑启发的原理,分类了多层感知器、卷积神经网络、脉冲神经网络和水库计算等光子神经网络类型,分析了光子神经元与突触的优势及其相较于电子系统的性能提升。最后总结了当前技术的优缺点,并展望了未来发展方向:在硬件安全中结合多种分类器以提高检测精度,在光子神经形态计原创 2025-10-01 14:02:47 · 10 阅读 · 0 评论 -
31、硬件木马威胁与应对措施及机器学习应用
本文系统探讨了硬件木马(HT)的威胁机制、分类、影响及其应对策略。文章详细分析了HT的内部与外部激活方式、在芯片各组件中的潜在位置及功能改变、信息泄露等危害,并介绍了IP级、总线级和芯片级HT的差异。针对HT威胁,提出了预硅与后硅检测、诊断方法以及混淆、布局填充和分割制造等预防技术。同时,深入阐述了机器学习在硬件安全中的应用,包括监督与无监督算法在HT检测与分类中的优势,强调了多模态融合、智能化防御与软硬件协同的未来发展趋势,为构建高安全性硬件系统提供了全面的技术路径。原创 2025-09-30 14:58:32 · 12 阅读 · 0 评论 -
30、物联网节点硬件安全中的机器学习应用
本文探讨了物联网节点硬件安全中机器学习的应用,重点分析了硬件特洛伊木马(HT)在IC设计与制造各阶段的威胁。文章介绍了HT的分类方式、攻击路径及现有检测难点,并提出了一种基于机器学习的四阶段HT检测方法:电路结构分析、特征提取、分类器训练与HT检测。通过监督与无监督学习相结合的方式,利用功耗、运行时间等特征提升检测精度。最后强调,需结合机器学习技术与供应链管理等预防措施,全面提升物联网设备的硬件安全性。原创 2025-09-29 13:43:04 · 14 阅读 · 0 评论 -
29、基于深度学习的侧信道攻击与防护技术研究
本文研究了基于深度学习的侧信道攻击与防护技术,提出一个包含朴素实现、一致性风格测试、功耗分析、对抗措施和受保护实现评估的漏洞分析框架。通过GIFT密码的三种实现配置(朴素、展开、带阈值实现的展开)进行实验,结合CNN模型分析不同防护手段对攻击复杂度的影响。结果表明,展开实现和阈值实现能显著增加攻击所需轨迹数,提升抗侧信道攻击能力,但伴随电路复杂度与面积开销的增加,需在安全性与资源之间权衡。原创 2025-09-28 14:22:47 · 11 阅读 · 0 评论 -
28、强化学习算法与硬件设计及侧信道攻击分析
本文探讨了强化学习算法与硬件设计的结合,重点介绍了在FPGA上实现的强化学习代理(RLA)架构及其在自主机器人中的应用。文章分析了不同运行模式和状态转换机制,并讨论了侧信道攻击(SCAs)的原理与防御技术,如阈值实现和私有电路。同时,展望了多智能体系统在农业、医疗、金融等领域的应用潜力,强调知识共享与分布式学习带来的性能提升。最后,总结了当前技术挑战与未来发展方向,展示了边缘计算中RL算法加速的重要前景。原创 2025-09-27 12:57:13 · 6 阅读 · 0 评论 -
27、强化学习算法的硬件实现与应用
本文探讨了强化学习算法在硬件实现与实际应用中的进展,重点分析了多智能体强化学习(MARL)在硬件资源和数据传输方面的挑战。介绍了简单强化学习算法(SRL)的紧凑型硬件架构设计及其在FPGA上的高效实现,并与Q-学习硬件架构进行了比较,展示了其在资源占用和执行速度上的优势。同时,综述了Q-学习和SRL在机器人控制、交通信号优化、游戏AI等领域的应用,并提出了将强化学习硬件加速器应用于智能农业机器人的未来方向,特别是在温室环境中实现低延迟病害检测与药物喷洒的潜力。原创 2025-09-26 09:50:13 · 5 阅读 · 0 评论 -
26、边缘设备强化学习算法的硬件实现
本文探讨了强化学习算法在边缘设备上的硬件实现方法,重点分析了强化学习与马尔可夫决策过程(MDP)的基本原理,并介绍了在FPGA、ASIC和SoC等硬件平台上实现深度强化学习(DRL)的挑战与优势。文章提出了一种简单强化学习(SRL)算法的硬件架构,包含状态寄存器、动作选择、状态转换和奖励读取模块,并通过数据流模型展示了其运行机制。同时,对比了GPU、ASIC、SoC和FPGA等硬件平台的性能特点,讨论了Q-学习与多智能体强化学习(MARL)在机器人、资源管理和游戏等领域的应用。最后,展望了未来在硬件优化与实原创 2025-09-25 14:30:18 · 8 阅读 · 0 评论 -
25、人工神经网络的高效设计:无乘法器与近似乘积累加块
本文探讨了人工神经网络(ANN)的两种高效硬件设计方法:无乘法器神经元和基于近似计算的乘积累加(MAC)块。通过使用单一字母集{1}的地址选择存储器(ASM),实现了无需乘法运算的神经元结构,在仅损失0.35%准确率的情况下显著降低电路复杂度与功耗。同时,引入近似加法器与乘法器(如PBAM和LEBZAM)构建SMAC神经元与SMAC ANN架构,实验结果显示在可接受误差范围内,面积和能量增益最高达64%,有效提升了能效比。文章还分析了不同架构的性能差异、误差控制策略及未来发展趋势,并提供了实际应用中的设计建原创 2025-09-24 12:20:37 · 9 阅读 · 0 评论 -
24、机器学习中的近似计算技术与高效神经网络设计
本文探讨了机器学习中的近似计算技术及其在高效神经网络设计中的应用。通过数据导向和处理导向的近似方法,如数据格式调整、数据集缩减、计算跳过和近似计算,显著降低了算法复杂度与能耗。重点介绍了字母集乘法器(ASM)在人工神经网络中的应用,结合CSHM架构和受限训练策略,在人脸检测和MNIST识别任务中实现了高能效与低精度损失的平衡。实验表明,该方法可在精度损失小于0.5%的情况下大幅提升计算效率,适用于嵌入式系统与低功耗AI应用。原创 2025-09-23 13:32:53 · 9 阅读 · 0 评论 -
23、机器学习中的近似计算与神经网络
本文探讨了近似计算在机器学习与神经网络中的应用,介绍了近似计算的基本概念、策略及其在不同领域的激励与挑战。文章详细分析了神经网络的结构、分类及权重与偏置的作用,并阐述了近似计算在硬件、软件和系统层面的实现方式。通过误差分析指标评估近似效果,结合图像处理和语音识别等案例,展示了近似计算在实际应用中的优势。最后,文章展望了近似计算未来的发展趋势,包括智能策略、跨层次协同优化及与新兴技术的融合,强调其在提升计算效率和降低能耗方面的重要价值。原创 2025-09-22 11:40:55 · 5 阅读 · 0 评论 -
22、机器学习中的近似计算与神经网络
本文深入探讨了机器学习中的近似计算与神经网络技术,涵盖近似计算的概念、策略、应用场景及误差分析方法,并系统介绍了神经网络的架构、分类及其在图像处理等领域的应用。重点分析了近似计算在人工神经网络(ANN)和卷积神经网络(CNN)中的实际应用,提出了实施步骤与优化方向。同时展望了未来在边缘计算、物联网和医疗等领域的拓展潜力,总结了准确性与效率平衡、模型可解释性等关键挑战,为构建高效、节能的人工智能系统提供了理论支持与实践指导。原创 2025-09-21 15:46:58 · 8 阅读 · 0 评论 -
21、保障物联网微服务与近似计算在机器学习架构中的应用
本文探讨了保障物联网微服务架构的安全性设计及其在家庭环境中的应用,提出基于REG和UAA的分层安全机制,结合OAuth2、TLS和MQTT实现轻量级且可靠的安全通信。同时,研究近似计算在机器学习架构中的应用,通过降低计算精度以显著节约能耗,提升系统效率,适用于资源受限的物联网场景。文章展示了系统部署与测试结果,并分析了两种技术路径的优势与挑战,为智能家居和边缘智能提供了可复用的参考实现。原创 2025-09-20 15:57:47 · 5 阅读 · 0 评论 -
20、物联网微服务安全架构解析
本文提出了一种面向物联网的微服务安全架构,通过分层设计(本地或边缘层与集中层)和多种安全方案(基本、轻量级、强化),在保障系统安全性的同时兼顾资源受限设备的适应性。架构采用OAuth2进行身份认证与授权,结合单向/双向TLS加密通信,并引入注册服务(REG)实现服务发现与负载均衡。消息服务基于MQTT协议,持久化服务集成Hadoop生态,适用于智能家居等场景。文章详细分析了各组件功能与安全机制的选择逻辑,并给出了推荐启动顺序以确保系统稳定性,为物联网系统的安全部署提供了可扩展、灵活的解决方案。原创 2025-09-19 10:43:27 · 6 阅读 · 0 评论 -
19、基于机器学习的GaN HEMT器件建模与物联网微服务安全保障
本文探讨了机器学习在GaN HEMT器件建模中的应用,采用C4.5决策树算法对器件在300 K至600 K温度范围内的电气特性进行预测,表现出高精度与良好外推能力。同时,研究了物联网环境下基于微服务架构和OAuth2协议的安全保障机制,通过安全网关、微服务模块、OAuth2服务器和数据存储组件的协同工作,构建了安全可靠的物联网系统。结果表明,机器学习能有效提升半导体器件建模精度,而微服务结合OAuth2可增强物联网系统的安全性。未来工作将拓展模型输入参数与温度范围,并持续应对新型安全挑战。原创 2025-09-18 09:36:41 · 7 阅读 · 0 评论 -
18、用于半导体器件建模的机器学习算法
本文探讨了机器学习在半导体器件建模中的应用,重点分析了其在氮化镓(GaN)高电子迁移率晶体管(HEMT)电热建模中的可行性。文章综述了传统建模方法的局限性,介绍了各类机器学习算法及其在器件建模中的优势,并通过基于决策树的监督学习方法进行了案例研究。实验结果表明,该方法能有效预测HEMT的电流-电压特性,尽管存在覆盖范围有限和训练效率低等问题。未来展望包括模型优化、暗数据挖掘、跨领域融合及统一建模框架的开发,以推动半导体技术的进步。原创 2025-09-17 14:46:40 · 5 阅读 · 0 评论 -
17、高性能计算技术在机器学习与图像分析中的应用
本文探讨了高性能计算技术在机器学习与图像分析中的关键作用,重点介绍了卷积神经网络(CNN)和生成对抗网络(GAN)的基本原理及其应用。文章分析了不同硬件平台在图像处理任务中的性能表现,比较了GPU、FPGA和CPU在并行计算能力、功耗和适用场景方面的优劣,并通过医疗图像分析和智能安防监控等案例展示了硬件技术的实际应用。此外,文章还展望了硬件融合、算法与硬件协同优化以及应用领域的扩展等未来发展趋势,强调了FPGA和GPU在提升神经网络训练效率和实时处理能力方面的重要价值。原创 2025-09-16 10:58:42 · 7 阅读 · 0 评论 -
16、高性能计算技术在图像处理中的应用概述
本文综述了高性能计算(HPC)技术在数字图像处理中的应用,涵盖基于云的分布式计算、GPU加速、GPU集群、多核架构等关键技术,并结合案例研究分析其性能提升效果。同时探讨了卷积神经网络(CNNs)和生成对抗网络(GANs)在图像处理中的核心作用,以及HPC在神经网络训练与专用硬件设计(如FPGA、TPU)中的应用。文章指出,HPC与深度学习的融合正推动医学影像、自动驾驶、智能安防等领域的发展,未来将持续驱动图像处理技术创新。原创 2025-09-15 09:30:15 · 7 阅读 · 0 评论 -
15、机器学习在 VLSI 设计中的应用
本文探讨了机器学习在VLSI设计中的广泛应用,涵盖设计规则检查、可制造性设计优化、验证方法改进、特定电路问题解决以及测试与诊断等多个关键环节。通过支持向量机、神经网络、聚类和异常检测等技术,机器学习显著提升了设计效率、准确性和可制造性。同时,文章分析了当前面临的挑战,如数据质量与流程集成问题,并展望了机器学习与EDA工具协同发展的未来前景。原创 2025-09-14 15:23:40 · 7 阅读 · 0 评论 -
14、机器学习在超大规模集成电路(VLSI)设计中的应用
本文探讨了机器学习在超大规模集成电路(VLSI)设计中的广泛应用,涵盖系统级设计、逻辑综合、物理设计、验证、测试与诊断等关键环节。文章介绍了机器学习的基本概念及其在性能估计、功耗管理、路由拥塞预测、故障诊断等方面的具体应用,同时分析了当前面临的挑战,如数据质量、模型可解释性及与现有流程的集成问题,并展望了未来发展方向,包括更智能的设计助手、实时自适应设计和跨领域技术融合。原创 2025-09-13 14:09:01 · 10 阅读 · 0 评论 -
13、二进制神经网络在VLSI测试与控制中的应用
本文探讨了二进制神经网络在VLSI测试与控制中的创新应用,涵盖一维和二维卷积自编码器模型、反向传播算法、基于B-RNN的片上压缩技术以及控制器无效状态检测。同时介绍了机器学习在系统级设计、逻辑综合、物理设计、验证及测试诊断等VLSI设计全流程中的应用,分析了其在提升设计效率、故障覆盖率和硬件安全性方面的优势,并讨论了当前面临的挑战。实验结果表明,二进制神经网络在保持低硬件开销的同时实现了高故障覆盖率,展现出在未来DFT技术中的巨大潜力。原创 2025-09-12 12:10:41 · 30 阅读 · 0 评论 -
12、自动驾驶汽车的感知、测试与安全机制
本文深入探讨了自动驾驶汽车的感知、规划与控制三大关键阶段及其安全机制,分析了传统VLSI测试技术的局限性,并介绍了功能安全标准ISO 26262与ISO/PAS 21448的核心内容。文章重点阐述了汽车安全完整性等级(ASIL)和故障检测时间间隔(如FTTI、FDTI等)在安全保障中的作用,提出利用二进制卷积神经网络推导小型化在线测试硬件的新思路。通过实验对比1D与2D二进制CNN在故障检测中的表现,展示了深度学习在提升自动驾驶系统实时性与可靠性方面的潜力。最后,文章展望了技术融合、硬件优化与安全标准完善的原创 2025-09-11 11:53:43 · 9 阅读 · 0 评论 -
11、智能交通与硬件安全:机器学习与自动驾驶的融合探索
本文探讨了机器学习在智能交通系统中的应用,特别是在应用流量分类与易受攻击路由器识别中的作用,并结合Noxim仿真平台和MATLAB实现流程。同时分析了自动驾驶车辆的发展现状、优势、功能分类及安全挑战,重点讨论了硬件设计可靠性与安全管理机制。文章还介绍了自动驾驶的六个自动化等级及其技术要求,强调了传感、感知、决策与执行环节的风险应对策略,展望了未来自动驾驶在安全保障与技术创新方面的融合发展方向。原创 2025-09-10 09:48:35 · 6 阅读 · 0 评论 -
10、片上网络中基于应用驱动的故障识别
本文提出了一种基于应用驱动的片上网络(NoC)中故障识别方法,通过建立路由器可靠性的数学模型,结合Noxim模拟器获取各路由器的工作负载,并利用监督式机器学习对应用流量进行分类。通过提取全局平均延迟、网络吞吐量、能量消耗等特征构建特征向量,训练K-NN分类模型,实现对不同应用流量的准确识别。结合预先生成的查找表(LUT),将流量类别映射到对应的易受攻击路由器集合,从而在流量注入前预测潜在故障点。该方法为NoC的容错设计和可靠性提升提供了有效支持,并展望了未使用路由器池化等结构冗余优化方向。原创 2025-09-09 15:08:36 · 6 阅读 · 0 评论 -
9、机器学习在硬件安全中的应用与挑战
本文探讨了机器学习在硬件安全领域的应用与挑战,涵盖硬件木马检测、集成电路仿冒识别、逆向工程防御及侧信道攻击等多个方面。文章分析了机器学习在不同硬件安全任务中的技术方法,如单类SVM、聚类算法和深度学习模型的应用,并讨论了其面临的威胁,包括对抗性输入、训练数据投毒以及模型可解释性等问题。同时,提出了增强模型鲁棒性、数据清洗、多模型融合等应对策略,并展望了未来在智能模型开发、安全设计和供应链管理方面的研究方向。原创 2025-09-08 11:30:50 · 10 阅读 · 0 评论 -
8、机器学习在硬件安全中的应用与挑战
本文探讨了机器学习在硬件安全领域的应用与挑战,涵盖了监督学习、无监督学习及特征选择与降维等常用算法,并分析了其在硬件木马检测、逆向工程防御、侧信道攻击防护、IC假冒识别等方面的应用。文章还总结了现有基于机器学习的硬件安全保护机制,并展望了未来研究方向,包括算法优化、多算法融合、实时检测和对抗攻击防御,旨在提升硬件系统的安全性与可靠性。原创 2025-09-07 10:07:25 · 8 阅读 · 0 评论 -
7、机器学习在硬件安全中的应用与技术解析
本文深入探讨了机器学习在硬件安全领域的应用与技术实现,系统介绍了机器学习的基本流程,包括数据预处理、模型训练、验证与测试等阶段。重点分析了监督学习和无监督学习的区别,并详细阐述了多种监督学习算法(如SVM、决策树、随机森林、神经网络等)的原理、应用场景及优势。结合硬件安全的实际需求,文章展示了机器学习在硬件木马检测、异常识别、故障预测等方面的具体实施流程,并通过mermaid流程图直观呈现关键步骤。最后展望了未来发展趋势,包括多算法融合、强化学习引入以及与物联网等新兴技术的结合,为提升硬件系统安全性提供了全原创 2025-09-06 09:57:47 · 2 阅读 · 0 评论 -
6、硬件安全中的在线监测与机器学习方法
本文探讨了硬件安全中的在线监测技术与机器学习方法。首先介绍了一种基于信号概率可靠性分析(SPRA)的低开销在线监测技术,用于在门级网表中检测硬件木马,实验结果显示该方法显著提升了检测覆盖率。随后,文章分析了机器学习在硬件安全中的应用,涵盖监督学习与无监督学习,包括SVM、聚类算法等在硬件木马检测、逆向工程防范、侧信道分析防御和IC防伪等方面的应用。同时讨论了机器学习带来的新型攻击风险及数据隐私、对抗性攻击等新兴挑战,并展望了多技术融合与实时监测等未来方向。原创 2025-09-05 09:53:24 · 5 阅读 · 0 评论 -
5、机器学习在VLSI电路测试与硬件木马检测中的应用
本文探讨了机器学习在VLSI电路测试与硬件木马检测中的关键应用。重点分析了机器学习在掩模合成与物理布局中的热点检测、物理布局优化、分辨率增强技术(如SRAF和OPC)等方面的作用,总结了SVM、PCA、ANN等方法在提升检测精度与效率方面的优势。同时,针对硬件安全问题,提出了一种基于在线监测的硬件木马检测方案,适用于智能医疗设备等高安全性需求场景。通过可靠性分析与低开销检查器部署,实现了高精度的运行时威胁检测。最后展望了机器学习在未来芯片测试与安全防护中的广阔前景。原创 2025-09-04 12:55:09 · 9 阅读 · 0 评论 -
4、机器学习在超大规模集成电路测试中的应用
本文探讨了机器学习在超大规模集成电路(VLSI)测试中的广泛应用,涵盖数字和模拟电路的测试挑战与解决方案。通过监督学习和无监督学习方法,如支持向量机(SVMs)、人工神经网络(ANNs)等,机器学习在替代测试、故障诊断、测试压缩、异常值检测和自适应测试等方面展现出显著优势。文章还介绍了机器学习在功率建模、电路合成、布局自动化等领域的应用,展示了其在降低测试成本、提升测试效率和准确性方面的巨大潜力。随着技术的发展,机器学习正成为集成电路测试不可或缺的关键技术。原创 2025-09-03 13:56:03 · 35 阅读 · 0 评论 -
3、机器学习与人工智能算法的硬件实现:技术与应用
本文系统探讨了机器学习与人工智能算法在多种硬件平台上的实现技术与应用,涵盖FPGA、GPU、ASIC及其他平台(如Raspberry Pi和RISC-V)。重点分析了固定点量化与二值化卷积神经网络(BCNN)在提升计算效率与能效方面的优势,并比较了不同硬件平台在性能、灵活性、成本和开发周期等方面的优劣。通过具体研究案例与流程图展示了各平台的实现方式,提出了硬件选择的决策依据,并展望了未来硬件加速在绿色计算、跨平台集成与软硬件协同优化等方面的发展趋势。文章为ML/AI算法的高效硬件实现提供了全面的技术参考与实原创 2025-09-02 15:50:51 · 3 阅读 · 0 评论 -
2、机器学习算法的硬件实现综述
本文对2011年至2020年间机器学习算法的硬件实现进行了系统性综述,重点分析了FPGA、GPU和ASIC等主流硬件平台在ML/AI算法加速中的应用。通过文献综述方法,总结了不同硬件架构的优势与局限,涵盖了自动驾驶、医疗图像处理、智慧城市等多个应用场景。文章还探讨了各类硬件平台的实现方式、性能指标及选择策略,并提供了基于研究问题的定性与定量分析,为后续ML硬件加速器的设计与优化提供了全面参考。原创 2025-09-01 09:46:41 · 8 阅读 · 0 评论 -
1、VLSI与硬件实现:现代机器学习方法的应用与探索
本文探讨了现代机器学习方法在超大规模集成电路(VLSI)与硬件实现中的广泛应用。从半导体器件建模、侧信道分析到硬件安全、故障检测与测试,再到逻辑与物理设计优化,机器学习技术正逐步解决传统设计中的瓶颈问题。文章系统梳理了监督与无监督学习算法的应用、不同硬件平台(如FPGA、GPU、ASIC)的实现方式,并展示了其在信号完整性、图像处理、物联网安全等领域的综合应用。随着技术发展,机器学习将推动VLSI向更高性能、更低功耗、更强安全性的方向持续演进。原创 2025-08-31 16:14:34 · 8 阅读 · 0 评论