u8v9w0x1y
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
22、药物与靶点相互作用预测:相似性和特征技术的比较探讨
本文综述了药物与靶点相互作用预测中的两类主要计算方法:基于相似性的技术和基于特征的技术。基于相似性的方法利用药物和靶点的相似性矩阵进行预测,包括邻域模型、二分局部模型、网络扩散模型和矩阵分解模型,具有计算速度快的优点,但多数难以直接用于新药或新靶点的预测。基于特征的方法则通过构建药物和靶点的特征向量,结合SVM、随机森林等机器学习模型进行分类,能保留数据属性并提升预测性能,尤其以集成模型表现更优,但复杂度较高。文章系统比较了各类方法的优缺点,并指出未来方向在于融合两类技术优势,提升预测准确性与适用性。原创 2025-10-07 04:49:47 · 20 阅读 · 0 评论 -
21、乳腺钼靶图像分类技术综合研究
本文系统综述了乳腺钼靶图像分类中的多种机器学习与深度学习方法,涵盖基于概率、相似性、规则和函数的分类器原理及优缺点,并分析了数据异构、特征相似性、冗余数据以及过拟合等关键挑战。文章对比了不同分类方法在训练速度、准确率、可解释性等方面的性能,提出了应对挑战的策略,如正则化、数据增强和集成学习。同时,深入探讨了深度学习在模型架构优化、多模态融合和迁移学习方面的发展趋势,展望其在临床辅助诊断、疾病预测和个性化医疗中的应用前景,为乳腺癌智能诊断技术的发展提供了全面的技术参考。原创 2025-10-06 16:25:33 · 6 阅读 · 0 评论 -
20、皮肤病与乳腺钼靶图像分类技术:计算机辅助诊断新进展
本文综述了计算机辅助皮肤病(CASD)与乳腺钼靶图像分类技术的最新进展。CASD系统利用人工智能技术对皮肤病变进行分类,通过不断积累数据提升诊断准确率。在乳腺钼靶图像分类方面,系统涵盖预处理、算法设计到预测的完整流程,并广泛应用基于函数、概率、规则和相似性的机器学习方法,其中SVM、随机森林和CNN等模型表现突出。深度学习凭借自动特征提取和端到端学习优势显著提升分类性能,但也面临数据需求大和可解释性差等挑战。文章还总结了公共数据集及各类技术优缺点,展望了未来在医疗AI中的发展方向。原创 2025-10-05 16:06:01 · 6 阅读 · 0 评论 -
19、基于机器学习技术的iOS平台计算机辅助皮肤病(CASD)分类
本文提出了一种基于机器学习技术的iOS平台计算机辅助皮肤病(CASD)分类系统,利用Create ML和Core ML构建皮肤病变分类模型,并结合Firebase实现用户认证与数据管理。系统使用HAM10000数据集中的三种皮肤病变图像进行训练与测试,在iOS平台上实现了高效、准确的实时分类。通过注册、登录、拍照和分类功能模块,用户可便捷地获取初步诊断结果。实验结果显示,系统训练和验证准确率达到84%,具备良好的响应速度和较低的资源消耗。文章还分析了系统的优缺点,并提出了未来在数据扩充、模型优化、多模态融合原创 2025-10-04 11:56:34 · 3 阅读 · 0 评论 -
18、基于模糊卷积神经网络的疾病诊断系统研究
本文提出了一种基于模糊卷积神经网络的疾病诊断系统架构,旨在克服传统卷积神经网络在处理模糊症状信息和医学图像方面的局限性。该系统结合CT扫描图像与患者模糊症状,通过接口层、模糊层和卷积层协同工作,实现更准确的疾病分类。实验结果表明,该方法在敏感性、特异性和精确性方面表现优异,尤其适用于新冠等传染病的诊断。架构具有领域独立性,可拓展至皮肤疾病、植物病害、眼科疾病等多个应用场景,并具备向大数据分析与集成化医疗服务平台发展的潜力。原创 2025-10-03 09:31:19 · 1 阅读 · 0 评论 -
17、基于混合模糊卷积神经网络的疾病诊断技术解析
本文探讨了基于模糊逻辑与卷积神经网络的混合模型在疾病诊断中的应用,结合两者优势,实现图像特征自动提取、不确定性处理及推理解释能力。通过引入模糊化处理,提升了传统CNN在医疗影像分析中的鲁棒性与可解释性,尤其适用于新冠等病毒性疾病的CT图像诊断。文章详细解析了模型架构、关键技术环节,并通过实验验证其有效性,展示了在准确率、召回率和F1值上的优越性能,最后展望了未来优化方向与多模态应用潜力。原创 2025-10-02 11:34:00 · 2 阅读 · 0 评论 -
16、临床命名实体识别与模糊卷积神经网络在疾病诊断中的应用
本文探讨了临床命名实体识别(NER)与模糊卷积神经网络在疾病诊断中的应用。首先介绍了CLAMP、BLSTM及BLSTM与CRF结合的NER模型,分析其在提取临床文本中问题、治疗和测试等实体的表现,指出BLSTM+CRF模型在准确性和上下文处理上优于传统方法,但仍受限于词嵌入质量。随后,文章提出将模糊逻辑与卷积神经网络结合,构建模糊卷积神经网络用于新冠等疾病的诊断,利用CT图像自动特征提取与模糊症状信息融合,提升诊断的准确性、敏感性和精确性。实验结果表明该混合模型具有良好的应用前景,未来可扩展至多种疾病诊断场原创 2025-10-01 10:35:31 · 1 阅读 · 0 评论 -
15、临床命名实体识别方法探究
本文系统探讨了临床命名实体识别(NER)的主流方法,包括基于规则、机器学习和混合方法,并对各类技术进行了详细分析。文章综述了手动标注、启发式规则、字典查找、监督与无监督学习、CRF、LSTM等关键技术的应用与局限性。通过在i2b2、UMLS和CONLL 2003数据集上的实验,比较了spaCy、CRF和LSTM模型的性能,验证了深度学习在临床NER中的优越性。最后,文章展望了未来研究方向,包括模型优化、多方法融合、减少标注依赖及提升可解释性,为医学文本信息处理提供理论支持和技术路径。原创 2025-09-30 12:36:21 · 0 阅读 · 0 评论 -
14、血细胞微观分析与临床命名实体识别:医疗信息提取的前沿探索
本文探讨了血细胞微观分析与临床命名实体识别在医疗信息提取中的前沿应用。血细胞微观分析通过形态和数量变化辅助白血病、疟疾等疾病的诊断,重点研究细胞分割、特征提取与分类算法优化;临床命名实体识别则从电子病历中提取疾病、症状等关键信息,涵盖基于规则、机器学习与深度学习等多种技术方法。文章分析了两类技术的挑战与解决方案,并展示了其在实际医疗场景中的协同作用与应用案例,展望了智能化、多模态融合与实时预警的未来发展趋势。原创 2025-09-29 09:16:55 · 0 阅读 · 0 评论 -
13、血细胞微观分析用于疾病检测综述
本文综述了基于血细胞微观图像分析的疾病检测技术,涵盖血液成分、传统检测方法及自动化图像处理流程。文章详细介绍了从图像采集、增强、分割、特征提取到分类与疾病检测的完整流程,总结了常用算法与分类器,并对比了多种白血病检测技术的性能。同时,梳理了当前研究中存在的主要差距,如细胞重叠处理、分类器优化、白血病亚型识别不足及评估指标单一等问题。最后,通过多个应用案例分析展示了该技术在血癌、贫血、疟疾等疾病诊断中的实际应用与挑战,为未来研究提供了方向。原创 2025-09-28 15:48:35 · 0 阅读 · 0 评论 -
12、机器学习与血细胞微观分析在疾病检测中的应用
本文综述了机器学习在生物信息学、医学及其他领域的应用,重点探讨了其与血细胞微观分析结合在疾病检测中的潜力。文章介绍了基因识别、癌症分类、心房颤动预测等关键技术,分析了血细胞图像分割与噪声处理的挑战及解决方案,并展望了在个性化医疗和早期疾病检测中的未来发展方向。通过流程图与对比表格,系统展示了研究进展与技术路径,凸显了机器学习赋能精准医疗的重要价值。原创 2025-09-27 14:54:25 · 0 阅读 · 0 评论 -
11、生物信息学中的机器学习算法与基因预测
本文介绍了一种基于Apache Spark框架的自适应朴素贝叶斯机器学习(NBML)算法,用于高效准确地预测真核生物基因组中的蛋白质编码基因。结合大规模人类基因组数据(GRCh37和GRCh38),通过数据预处理、离散化密码子特征提取及分布式计算,该模型在灵敏度、特异性、精确率和准确率等指标上均优于传统算法如FGENEH和GRAIL II。研究展示了该算法在大数据环境下的可扩展性与容错能力,并展望了迁移学习、集成学习及跨物种应用的未来发展方向。原创 2025-09-26 11:47:37 · 23 阅读 · 0 评论 -
10、结核病诊断与基因预测的机器学习方法
本文探讨了机器学习在结核病诊断与基因预测中的应用。在结核病诊断方面,基于卷积神经网络的模型通过多层卷积、池化和全连接结构实现了高精度分类,Adam优化器表现出最优性能;在基因预测领域,提出了一种基于自适应朴素贝叶斯(NBML)的算法,部署于Apache Spark平台,有效提升了对真核生物基因组中蛋白质编码基因的预测准确率,并具备良好的知识迁移能力。文章还分析了模型各组件作用、优化策略及未来改进方向,展示了机器学习在医疗健康领域的巨大潜力。原创 2025-09-25 11:02:21 · 1 阅读 · 0 评论 -
9、肺结核疾病分类的神经网络与深度学习方法
本文系统介绍了基于神经网络与深度学习的肺结核疾病图像分类方法,涵盖图像预处理、分割、特征提取和分类等关键步骤。详细分析了伽马调整、Otsu、K-均值聚类、Hough变换等预处理与分割技术,并探讨了GLCM纹理特征提取方法。对比了人工神经网络(ANN)与深度卷积神经网络(DCNN)在肺结核X光图像分类中的性能表现,展示了两种方法在准确率、计算复杂度和适用场景上的差异。文章还讨论了模型调优、评估指标及实际应用注意事项,并展望了多模态融合、迁移学习与临床结合的未来发展趋势,为智能肺结核诊断提供了全面的技术参考。原创 2025-09-24 16:10:05 · 1 阅读 · 0 评论 -
8、肺结核疾病的诊断与分析:简单神经网络与深度学习方法
本文探讨了肺结核疾病的诊断方法,重点比较了基于简单神经网络与支持向量机(ANN-SVM)的特征训练方法和深度学习中的深度卷积神经网络(DCNN)方法。通过分析两种方法在准确率、适用场景、特征提取方式等方面的差异,指出ANN-SVM适用于小数据集且效率高,而DCNN在大数据集上表现优异,准确率达到99.24%。文章还介绍了CAD系统的四个阶段、特征选择的重要性及常用图像特征,并提出了根据数据规模选择合适方法的建议,展望了人工智能在肺结核诊断中的未来应用。原创 2025-09-23 09:09:48 · 1 阅读 · 0 评论 -
7、利用人工智能预测青光眼诊断
本研究利用人工智能技术开发了多种机器学习模型用于青光眼的自动诊断。基于包含1082名患者的数据集,研究比较了J48、朴素贝叶斯、多层感知器、随机森林、KNN和SVM等算法在2类、4类和7类青光眼数据上的表现,并构建了投票集成分类器以提升准确率。结果显示,由朴素贝叶斯、MLP和J48组成的FGLAUC-99集成分类器达到99.18%的准确率,AUC均为1.000,显著优于单一分类器和其他文献方法,展现出在青光眼智能诊断中的巨大潜力。原创 2025-09-22 16:34:55 · 1 阅读 · 0 评论 -
6、利用人工智能预测青光眼诊断
本文探讨了人工智能在青光眼诊断中的应用,重点介绍了基于多分类器集成的FGLAUC-99模型。该模型结合多层感知器、朴素贝叶斯和J48决策树等算法,利用概率平均集成策略提升预测准确性,达到99%的诊断准确率。文章系统阐述了青光眼的类型、症状、统计数据及传统诊断方法,并分析了AI在医学图像处理与眼科疾病识别中的优势。通过十折交叉验证和临床数据集测试,FGLAUC-99模型展现了高精度与可解释性兼备的特点,为青光眼早期筛查和精准分类提供了有效的技术路径。原创 2025-09-21 11:22:36 · 1 阅读 · 0 评论 -
5、医学影像深度学习诊断:COVID-19与青光眼的智能检测
本文综述了深度学习在医学影像诊断中的应用,重点探讨了基于胸部X光和CT图像的COVID-19智能检测方法,对比了多种卷积神经网络模型在不同数据集上的准确率表现。同时介绍了用于青光眼诊断的集成分类器FGLAUC-99模型,该模型结合朴素贝叶斯、J48决策树和MLP神经网络,实现了99.18%的高准确率。文章还分析了各类方法的优势与局限,展望了多模态融合、个性化医疗和实时诊断等未来发展趋势,强调了深度学习在提升医疗诊断效率与准确性方面的巨大潜力。原创 2025-09-20 14:05:18 · 3 阅读 · 0 评论 -
4、基于深度迁移学习的 COVID - 19 检测模型研究
本研究提出了一种基于深度迁移学习的COVID-19检测模型,利用预训练的VGG-16和VGG-19卷积神经网络对胸部X光图像进行分类。通过数据均衡处理和旋转增强提升泛化能力,采用迁移学习与模型微调策略,在三类分类任务中VGG-16模型取得了97.33%的高准确率,显著优于现有方法。研究验证了模型在二进制与多类别场景下的优越性能,并探讨了其在快速诊断、辅助医疗决策和疫情监测中的实际应用潜力。同时指出了数据量有限和模型可解释性不足等局限性,提出了未来在数据扩充、可解释性分析及多模态融合方向的改进路径。原创 2025-09-19 11:17:36 · 0 阅读 · 0 评论 -
3、语音压力识别与COVID - 19检测的技术探索
本文探讨了语音压力识别与基于人工智能的COVID-19检测技术。在语音压力识别方面,比较了MFCC与多种VQ聚类算法(如LBG、KFCG)的性能,结果显示基于VQ的方法在准确性和计算效率上均优于传统MFCC方法。在COVID-19检测研究中,采用微调的VGG-16和VGG-19模型结合深度迁移学习对胸部X射线图像进行分类,实验表明VGG-16在二分类和多分类任务中表现更优。文章还分析了两类技术的应用前景、面临的挑战及未来发展方向,并展望了多模态融合与实时更新模型的技术趋势。原创 2025-09-18 13:59:02 · 1 阅读 · 0 评论 -
2、基于聚类技术的语音压力识别方法研究
本文研究基于聚类技术的语音压力识别方法,重点分析情绪驱动和外部环境引发的压力语音。通过改进特征提取技术,结合矢量量化(VQ)算法与支持向量机(SVM)分类器,在保证识别准确率的同时显著降低计算时间,适用于低成本处理器和移动应用。实验使用SAVEE和eNTERFACE标准数据库,比较了MFCC、LBG、KFCG、KMCG及改进的MKFCG等方法的性能。结果表明,基于VQ的特征提取方法优于传统MFCC,尤其在32个簇时实现了准确率与计算效率的最佳平衡,为实时情绪识别系统提供了高效解决方案。原创 2025-09-17 15:53:57 · 0 阅读 · 0 评论 -
1、利用聚类技术从语音中识别压力
本文探讨了利用聚类技术从语音中识别压力的方法,比较了基于MFCC特征与三种向量量化(VQ)技术(LBG、KFCG及修改后的KFCG)在情绪识别中的性能。实验结果表明,采用修改后KFCG算法的VQ方法在计算时间和识别准确性上均表现最优。文章还分析了各技术原理,并展望了其在心理健康评估、智能客服和教育等领域的应用前景,指出多模态融合、深度学习和实时监测系统是未来发展方向。原创 2025-09-16 09:47:10 · 0 阅读 · 0 评论