深度强化学习的经典入门课程(附链接) | 课程地图


今天,你AI了没?

关注:决策智能与机器学习,学点AI干货



深度强化学习是一种非常主流的无监督学习范式,通过设定学习的要素、环境和反馈方法实现对模型的训练并能够在多个领域达到最佳表现(state of art),实现了可以不依赖于真实数据的学习模式。


在基于游戏环境的单智能体控制以及多智能体协同技术研究中,主要的方法就是基于深度强化学习技术,以及博弈论理论的探索。因此,决策智能当前最主要的技术方法就是深度强化学习。


今天给大家推荐比较有代表性的三门基础课程,专门针对强化学习,任何一个刷完基本都算是入门了,真正掌握还必须通过亲自动手实践才行。


伯克利大学:DRL课程


640?wx_fmt=png


伯克利大学2018年秋季课程,共六讲。


首先是关于模拟学习和Tensorflow的基础知识,然后介绍了策略梯度方法、表演者-评论家算法。作为入门基本够用,当然还有很多算法没有涉及,需要进一步看看李宏毅老师的课程或者DeepMind的进阶课程。

课程链接:

哔哩哔哩:https://www.bilibili.com/video/av39816961

课程官网:http://rail.eecs.berkeley.edu/deeprlcourse/


李宏毅:DRL课程

640?wx_fmt=png


台湾李宏毅老师在机器学习、深度学习方面的课程很成体系,讲授经验丰富,这门深度强化学习课程是2018年的国语课程,共8讲。该课程以讲述理论知识为主,关于强化学习方面的实际应用以及代码实现较少,可以考虑完成该课程布置的作业,以加深对算法的理解。


非常推荐反复学习一下。


课程链接:

哔哩哔哩:https://www.bilibili.com/video/av24667855/?spm_id_from=333.788.videocard.4


斯坦福:DRL课程

640?wx_fmt=png


斯坦福的课程讲的还是蛮细致的,共16讲,从模拟学习基本概念到各种主流的model-based、model-free方法,以及具体的模型训练方法、蒙特卡洛搜索方法等,很详细,当然时间也比较长,需要多花时间认真看看。看完基本全面掌握所有基础知识了。


课程链接:

哔哩哔哩:https://www.bilibili.com/video/av47812079


DeepMind:DRL高阶


640?wx_fmt=png


这门课程全程是深度学习与深度强化学习高阶课程,其中强化学习部门共10讲,将深度强化学习按照简介、马尔科夫与动态规划理论、model-based和model-free等主要建模方法、基于游戏环境的开发方法等全过程进行了深度讲解,说的蛮细致的,不过对于没有实操经验的人理解起来会有点困难,建议有一点初级的动手经验后看比较合适,或者先看完伯克利和李宏毅的课程。


课程链接:

哔哩哔哩:https://www.bilibili.com/video/av36718004/?p=9


相关推荐



交流合作


商务合作以及加入微信群,请添加微信号:yan_kylin_phenix

注意:请务必说明您的意向,注明姓名+单位+从业方向+地点,否则不予通过,请多谅解。

640?wx_fmt=jpeg



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值