今天,你AI了没?
关注:决策智能与机器学习,学点AI干货
深度强化学习是一种非常主流的无监督学习范式,通过设定学习的要素、环境和反馈方法实现对模型的训练并能够在多个领域达到最佳表现(state of art),实现了可以不依赖于真实数据的学习模式。
在基于游戏环境的单智能体控制以及多智能体协同技术研究中,主要的方法就是基于深度强化学习技术,以及博弈论理论的探索。因此,决策智能当前最主要的技术方法就是深度强化学习。
今天给大家推荐比较有代表性的三门基础课程,专门针对强化学习,任何一个刷完基本都算是入门了,真正掌握还必须通过亲自动手实践才行。
伯克利大学:DRL课程
伯克利大学2018年秋季课程,共六讲。
首先是关于模拟学习和Tensorflow的基础知识,然后介绍了策略梯度方法、表演者-评论家算法。作为入门基本够用,当然还有很多算法没有涉及,需要进一步看看李宏毅老师的课程或者DeepMind的进阶课程。
课程链接:
哔哩哔哩:https://www.bilibili.com/video/av39816961
课程官网:http://rail.eecs.berkeley.edu/deeprlcourse/
李宏毅:DRL课程
台湾李宏毅老师在机器学习、深度学习方面的课程很成体系,讲授经验丰富,这门深度强化学习课程是2018年的国语课程,共8讲。该课程以讲述理论知识为主,关于强化学习方面的实际应用以及代码实现较少,可以考虑完成该课程布置的作业,以加深对算法的理解。
非常推荐反复学习一下。
课程链接:
哔哩哔哩:https://www.bilibili.com/video/av24667855/?spm_id_from=333.788.videocard.4
斯坦福:DRL课程
斯坦福的课程讲的还是蛮细致的,共16讲,从模拟学习基本概念到各种主流的model-based、model-free方法,以及具体的模型训练方法、蒙特卡洛搜索方法等,很详细,当然时间也比较长,需要多花时间认真看看。看完基本全面掌握所有基础知识了。
课程链接:
哔哩哔哩:https://www.bilibili.com/video/av47812079
DeepMind:DRL高阶
这门课程全程是深度学习与深度强化学习高阶课程,其中强化学习部门共10讲,将深度强化学习按照简介、马尔科夫与动态规划理论、model-based和model-free等主要建模方法、基于游戏环境的开发方法等全过程进行了深度讲解,说的蛮细致的,不过对于没有实操经验的人理解起来会有点困难,建议有一点初级的动手经验后看比较合适,或者先看完伯克利和李宏毅的课程。
课程链接:
哔哩哔哩:https://www.bilibili.com/video/av36718004/?p=9
相关推荐
干货 | 深度强化学习国际顶会ICML-2019最新进展速览—论文PDF打包下载
最新 | 用深度强化学习打造不亏钱的交易机器人(附代码)
深度强化学习领域盘点系列 | 大神篇
深度强化学习领域盘点系列 | 大厂机构篇
深度强化学习 | 用TensorFlow构建你的第一个游戏AI
交流合作
商务合作以及加入微信群,请添加微信号:yan_kylin_phenix
注意:请务必说明您的意向,注明姓名+单位+从业方向+地点,否则不予通过,请多谅解。