神经元模型的降维与相平面分析
在神经科学领域,理解神经元动作电位的发放机制是一个核心问题。Hodgkin - Huxley模型成功地描述了动作电位的发放,但该模型由四个非线性微分方程定义,高维系统的行为难以可视化和分析。因此,降维与相平面分析成为研究神经元模型的重要工具。
1. 阈值效应
许多神经科学入门教材指出,当膜电位达到阈值时,神经元会发放动作电位。然而,这种阈值在数学上并没有明确定义。
1.1 脉冲输入
当使用不同时长的电流脉冲刺激Hodgkin - Huxley模型时,会得到不同的电压阈值。例如,1ms的短电流脉冲和100ms的长电流脉冲会导致不同的电压阈值。这表明神经元动作电位的发放虽然常被视为阈值行为,但该阈值依赖于刺激协议。
对于短电流脉冲,触发动作电位的有效阈值不是电流幅度,而是电流脉冲的积分或电荷。因为膜电容的存在,更多的电荷会使膜电压升高。短电流脉冲相当于电压的阶跃增加,电压升高量为$\Delta u = q/C$,其中$q$是电流脉冲的电荷。
1.2 阶跃电流输入
当使用阶跃电流$I(t) = I_1 + \Delta I \Theta(t)$刺激模型时,发放行为不仅取决于最终电流值$I_2$,还取决于电流阶跃的大小$\Delta I$。大的阶跃$\Delta I$有助于动作电位的起始。例如,目标值$I_2 = 2\mu A/cm^2$,只有当阶跃足够大时才会引发动作电位。
从图中可以得出,使用阶跃电流探测时,既没有唯一的动作电位起始电流阈值,也没有重复发放的电流阈值。动作电位的触发机制不仅取决于$I_2$,还取决于电流阶跃的大小$\Delta I$
超级会员免费看
订阅专栏 解锁全文
1142

被折叠的 条评论
为什么被折叠?



