4、神经元模型的降维与相平面分析

神经元模型的降维与相平面分析

在神经科学领域,理解神经元动作电位的发放机制是一个核心问题。Hodgkin - Huxley模型成功地描述了动作电位的发放,但该模型由四个非线性微分方程定义,高维系统的行为难以可视化和分析。因此,降维与相平面分析成为研究神经元模型的重要工具。

1. 阈值效应

许多神经科学入门教材指出,当膜电位达到阈值时,神经元会发放动作电位。然而,这种阈值在数学上并没有明确定义。

1.1 脉冲输入

当使用不同时长的电流脉冲刺激Hodgkin - Huxley模型时,会得到不同的电压阈值。例如,1ms的短电流脉冲和100ms的长电流脉冲会导致不同的电压阈值。这表明神经元动作电位的发放虽然常被视为阈值行为,但该阈值依赖于刺激协议。

对于短电流脉冲,触发动作电位的有效阈值不是电流幅度,而是电流脉冲的积分或电荷。因为膜电容的存在,更多的电荷会使膜电压升高。短电流脉冲相当于电压的阶跃增加,电压升高量为$\Delta u = q/C$,其中$q$是电流脉冲的电荷。

1.2 阶跃电流输入

当使用阶跃电流$I(t) = I_1 + \Delta I \Theta(t)$刺激模型时,发放行为不仅取决于最终电流值$I_2$,还取决于电流阶跃的大小$\Delta I$。大的阶跃$\Delta I$有助于动作电位的起始。例如,目标值$I_2 = 2\mu A/cm^2$,只有当阶跃足够大时才会引发动作电位。

从图中可以得出,使用阶跃电流探测时,既没有唯一的动作电位起始电流阈值,也没有重复发放的电流阈值。动作电位的触发机制不仅取决于$I_2$,还取决于电流阶跃的大小$\Delta I$

Matlab基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率内容概要:本文围绕Matlab在电力系统优化控制领域的应用展开,重点介绍了基于粒子群优化算法(PSO)和鲁棒MPPT控制器提升光伏并网效率的技术方案。通过Matlab代码实现,结合智能优化算法先进控制策略,对光伏发电系统的最大功率点跟踪进行优化,有效提高了系统在不同光照条件下的能量转换效率和并网稳定性。同时,文档还涵盖了多种电力系统应用场景,如微电网调度、储能配置、鲁棒控制等,展示了Matlab在科研复现工程仿真中的强大能力。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源系统开发的工程师;尤其适合关注光伏并网技术、智能优化算法应用MPPT控制策略研究的专业人士。; 使用场景及目标:①利用粒子群算法优化光伏系统MPPT控制器参数,提升动态响应速度稳态精度;②研究鲁棒控制策略在光伏并网系统中的抗干扰能力;③复现已发表的高水平论文(如EI、SCI)中的仿真案例,支撑科研项目学术写作。; 阅读建议:建议结合文中提供的Matlab代码Simulink模型进行实践操作,重点关注算法实现细节系统参数设置,同时参考链接中的完整资源下载以获取更多复现实例,加深对优化算法控制系统设计的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值