算法(二)

1     算法描述

给定两个整数 l 和 r ,对于所有满足1 ≤ l ≤ x ≤ r ≤ 10^9 的 x ,把 x 的所有约数全部写下来。对于每个写下来的数,只保留最高位的那个数码。求1~9每个数码出现的次数。

2     算法分析

本章节的算法分析包括两个步骤:用例分析与逻辑分析。

2.1   用例分析

用例名称

输入

分析步骤

输出

<10约数用例

I=1 r=6

代入条件可得:

1=<x<=6,x的列表={1,2,3,4,5,6},

6的约数集={1,2,3,6},

5的约数集={1,5},

4的约数集={1,2,4},

3的约数集={1,3},

2的约数集={1,2},

1的约数集={1}

6出现1次,

5出现1次,

4出现1次,

3出现2次,

2出现3次,

1出现6次数

>=10约数用例

I=9 r=13

代入条件可得:

9=<x<=13,x的列表={9,10,11,12,13},

9的约数集={1,3,9},

10的约数集={1,2,5,10},

11的约数集={1,11},

12的约数集={1,2,3,4,6,12},

13的约数集={1,13}

(其中,大于9的约数取最大的数值,例如约数13,取最高数码值3)

9出现1次

6出现1次

5出现1次

4出现1次

3出现3次

2出现3次

1出现7次

2.2   逻辑分析

算法主流程分析:

由以上的分析可知,算法的主要逻辑分为三个步骤:

  1.  从输入参数中获取上下界限的值

  2. 遍历上下界限的值中的每个数N,计算数值N的约数集合Y

  3. 合并每个数的约数集合Y,统计集合Y中数码次数的映射集合T

  4. 输出集合T

其中Y中无重复数字出现。

约数算法流程分析:

每个数值是偶数或者奇数,也就是2n或者2n+1,其约数小于或者等于n,等于1、2n或者2n+1

取约数中最高数码值流程分析:

遍历数字序列中每位数码值,取最大值

统计约数数码次数流程分析:

从约数合并集合中获取每个数值,统计其出现的次数,大于或等于10的数值,从数字序列中取最大数码值作为统计项

3     算法目标

算法运行的目标是最小化系统资源开销(包括处理器资源开销与内存资源开销)以及最小耗时(算法运行时长)。

4     算法设计

4.1   数据结构设计

名称

类型

长度

描述

输入整数数列范围

最小值I,最大值r,其中I>=1,r<=10的9次方

r-I+1

待处理整数数列的列表

约数集合

一维整型数组

长度等于元素的大小

索引位值标识为1的,索引位等于约数的值

统计约数个数集合

一维整型数组

10

数组索引位标识1到9的数码,每个索引位的值表示该索引位对应数码的统计值

4.2   算法逻辑设计

算法主流程设计:

  1.  从输入参数确定数值x的范围

  2. 迭代数值x范围内的数值,获得每个元素N,调用约数算法对数值N生成约数数组Y

  3.   调用统计约数算法对数组Y统计数码出现次数,生成数组C

  4. 返回数组C

  5. 迭代数组C,输出每个索引位对应的统计值

约数算法流程设计:

  1. 假设数值N是偶数,形式为2n,其约数是偶数数列中的某元素E,则E*S=2n,其中S是另一个约数,并且约数E、S小于等于n,保存E与S的值到约数集合中,并且约数集合中不能出现重复元素

  2. 假设数值N是奇数,形式是2n+1,其约数是奇数数列中的某元素E,则E*S=2n+1,其中S是另一个约数,并且约数E、S小于等于n,保存E与S值到约数集合中,并且约数集合中不能出现重复元素

约数最大数码位流程设计:

迭代并从约数的数码位序列中,取最大的数码值

约数集合统计数码次数流程设计:

迭代约数集合,从约数元素数值序列中获取最大数码值,统计所有数码值出现的次数,其中数码值大小范围是1到9

5     算法实现

5.1   程序语言

本程序设计使用Java语言。

5.2   程序示例

算法主流程代码示例:

约数算法流程代码示例:

约数最大数码位流程代码示例:

约数集合统计数码次数流程代码示例:

 

6     算法验证

本算法验证测试使用代码覆盖率测试方法。

6.1   测试用例

用例描述

输入数列

输入数列长度

输出数列

输出数列长度

覆盖函数

小于10范围的用例

随机生成上下界限

由随机数决定

由随机数决定

10

所有函数

大于或等于10范围的用例

随机生成上下界限

由随机数决定

由随机数决定

10

所有函数

6.2   执行用例

测试用例通过率100%,代码覆盖率100%。

7     算法效率

7.1   时间复杂度

由代码可知该算法的时间复杂度等于O(N的多次方)。

7.2   空间复杂度

该算法使用一维数组,其空间复杂度是常数。

7.3   性能测试

输入数列长度

输出数列长度

耗时

100范围

10

1毫秒

1000范围

10

23毫秒

10000范围

10

423毫秒

100000范围

10

30431毫秒

由以上的性能测试可知,每增加一个数量级范围,耗时增长很快,在这种的情况下需要进行算法优化。

7.4   算法优化

多线程的方式启动多个worker工作线程处理计算约数函数。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangys2006

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值