千鸽笼 题解

千鸽笼

时间限制: 1000ms

空间限制: 53687091kB

[题目描述]

你有 ( B − A + 1 ) (B-A+1) (BA+1) 只鸽子,它们的编号为从 A A A B B B 的整数。一开始每只鸽子都被单独关在一个笼子里。

现在为了节省空间,你需要将一些鸽子赶到另外的笼子里。你每次可以进行以下操作:

1.选择两只在不同笼子里的鸽子,使得它们的编号拥有至少一个大于等于P的公共质因数,然后钦定它们为它们当前所在笼子的首领。(否则这两群鸽子就会打起来)

2.将这两个笼子里的所有鸽子赶到同一个笼子里。

反复如上操作,直到剩下的鸽笼都无法合并为止。现在你需要求出最终还有几个鸽笼里有鸽子。

[输入格式]

一行三个正整数 A , B , P A,B,P A,B,P

[输出格式]

一行一个正整数,表示答案。

[输入样例]

10 20 3

[输出样例]

7

[数据范围]

对于 100 100 100% 的数据, 1 < = A < = B < = 100000 , 2 < = P < = B 1<=A<=B<=100000 , 2<=P<=B 1<=A<=B<=100000,2<=P<=B


题意:

A A A ~ B B B ( B − A + 1 ) (B-A+1) (BA+1) 个数,现在要将这几个数合并几组,要求组的所有数的公共质因数不小于 p p p ,求最少能分几组

一看到“合并”就想到了要用并查集

(并查集模板:)

void init () {
    for (int i = 1 ; i <= B ; i ++)  f [i] = i ;
}
int find (int x) {
    return f [x] == x ? x : f [x] = find (f [x]) ;
}
void merge (int x , int y) {
    int fx , fy ;
    fx = find (x) ; fy = find (y) ;
    if (fx != fy)  f [fx] = fy ;
}

那么想想:只要选定一个公共质因数 x ,保证 x >= p , 那么将它的倍数都合并,不就行了?

for (int i = 2 ; i <= B ; i ++)
        if (! prime [i] && i >= k) {
            sum = 0 ; 
            for (int j = 1 ; j <= B / i ; j ++)
                if (i * j >= A) {
                    sum ++ ; 
                    if (sum == 1)  p = i * j ;
                    else  merge (p , i * j) ;  //merge
                }
        }

最后在计数一下(我喜欢用map,因为map能放一存一,唯一缺点速度较慢)
输出答案

AC代码:

#include <bits/stdc++.h>
#define int long long
#define mod (1e9+7)
#pragma G++ optimize (2)
#pragma G++ optimize (3)
using namespace std ;
int  A , B , k , f [100010] , ans , sum , p , prime [100010] ;
map <int , int> js ;
void init () {
	for (int i = 1 ; i <= B ; i ++)  f [i] = i ;
}
int find (int x) {
	return f [x] == x ? x : f [x] = find (f [x]) ;
}
void merge (int x , int y) {
	int fx , fy ;
	fx = find (x) ; fy = find (y) ;
	if (fx != fy)  f [fx] = fy ;
}
main () {
	ios::sync_with_stdio (false) ;
	cin.tie (NULL) ; cout.tie (NULL) ;
	cin >> A >> B >> k ;
	init () ;
	for (int i = 2 ; i <= B ; i ++)
		if (! prime [i])
			for (int j = i * i ; j <= B ; j += i)
				prime [j] = 1 ;
	for (int i = 2 ; i <= B ; i ++)
		if (! prime [i] && i >= k) {
			sum = 0 ; 
			for (int j = 1 ; j <= B / i ; j ++)
				if (i * j >= A) {
					sum ++ ; 
					if (sum == 1)  p = i * j ;
					else  merge (p , i * j) ;
				}
		}
	for (int i = A ; i <= B ; i ++)
		if (js [find (i)] == 0) {
			ans ++ ; 
			js [find (i)] ++ ;
		}
	cout << ans ;
	return 0 ;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值