day2.逻辑回归算法梳理

本文深入探讨了逻辑回归与线性回归的联系与区别,重点阐述了逻辑回归的原理,包括sigmoid函数的引入以及损失函数的推导。此外,还介绍了正则化、模型评估指标,以及如何解决样本不均衡问题。最后,提到了在sklearn库中使用LogisticRegression的注意事项。
摘要由CSDN通过智能技术生成

day2.逻辑回归算法梳理

1、逻辑回归与线性回归的联系与区别

  • 逻辑回归本质上是线性回归,只是在特征到结果的映射中加入了一层逻辑函数sigmoid,即先把特征线性求和,然后使用函数sigmoid作为假设函数来预测。sigmoid函数可以将连续值映射到0和1。
    sigmoid函数为:
    sigmoid函数
  • 简单来说,逻辑回归与线性回归都属于广义线性模型,线性回归主要用来解决连续值预测的问题(因变量连续),逻辑回归用来解决分类的问题(因变量为二分类或多分类)。

2、 逻辑回归的原理
线性回归的假设(hypotheses)函数为:
线性回归函数
前面提到逻辑回归是在线性回归基础上加入一层sigmoid函数,即
逻辑回归公式
3、逻辑回归损失函数推导及优化

逻辑回归用来分类0/1 问题,也就是预测结果属于0 或者1 的二值分类问题。LR逻辑回归假设样本服从泊松0–1分布,也就是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值