day2.逻辑回归算法梳理
1、逻辑回归与线性回归的联系与区别
- 逻辑回归本质上是线性回归,只是在特征到结果的映射中加入了一层逻辑函数sigmoid,即先把特征线性求和,然后使用函数sigmoid作为假设函数来预测。sigmoid函数可以将连续值映射到0和1。
sigmoid函数为:
- 简单来说,逻辑回归与线性回归都属于广义线性模型,线性回归主要用来解决连续值预测的问题(因变量连续),逻辑回归用来解决分类的问题(因变量为二分类或多分类)。
2、 逻辑回归的原理
线性回归的假设(hypotheses)函数为:
前面提到逻辑回归是在线性回归基础上加入一层sigmoid函数,即
3、逻辑回归损失函数推导及优化
逻辑回归用来分类0/1 问题,也就是预测结果属于0 或者1 的二值分类问题。LR逻辑回归假设样本服从泊松0–1分布,也就是