计算机视觉学习:基于BOW模型的图像搜索

100 篇文章 26 订阅 ¥59.90 ¥99.00
本文介绍了基于词袋模型(BOW)的图像搜索方法,包括特征提取、编码、字典构建、图像表示和相似度计算。通过SIFT等特征提取方法,结合K均值聚类构建视觉词典,利用余弦相似度进行图像匹配。虽然存在局限性,但BOW模型在图像搜索领域仍具研究价值。
摘要由CSDN通过智能技术生成

在计算机视觉领域,图像搜索是一项重要的任务,它旨在通过分析图像的内容,找到与之相似的其他图像。一种常用的图像搜索方法是基于词袋模型(Bag of Words,BOW)。本文将介绍BOW模型的原理,并提供相应的源代码示例。

BOW模型是一种简化的图像表示方法,它将图像看作是由一组局部特征描述符组成的集合。具体而言,BOW模型包括以下几个步骤:

  1. 特征提取:首先,从每张图像中提取局部特征。常用的特征提取方法包括SIFT、SURF和ORB等。这些方法可以检测图像中的关键点,并计算每个关键点的特征描述符。

  2. 特征编码:将提取得到的特征描述符映射到一个固定大小的向量空间中。常用的编码方法包括词频(Term Frequency,TF)和逆文档频率(Inverse Document Frequency,IDF)等。这些方法可以将每个特征描述符表示为一个向量,其中每个维度表示特定特征的出现频率或重要性。

  3. 字典构建:通过聚类算法(如K均值聚类)将特征描述符进行分组,构建一个视觉词典(Visual Vocabulary)。视觉词典包含若干个视觉单词,每个视觉单词代表一组相似的特征描述符。

  4. 图像表示:对于每张图像,根据其特征描述符的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值