经验误差和过拟合
错误率:
分类错误的样本数占样本总数的比例
如果在
m
个样本中有
精度:
精度=1-错误率
acc=1−a/m
训练误差(经验误差):
学习器在训练集上的误差
泛化误差
学习区在新样本上的误差
过拟合(过配)
学习能力过于强大,以至于把一些不是太一般的特性都学到了
欠拟合(欠配)
学习能力低下
评估方法
基本思想
使用测试误差来近似泛化误差
注意事项
假设测试样本也是从样本的真实分布中独立同分布采样而得到。测试集应该和训练集互斥,即测试样本尽量不在测试样本中出现。
矛盾点
如果只有一个包含
m
个样例的数据集合
方法
留出法
方式
“留出法”(hold_out)直接将数据集
注意事项
训练集和测试集的划分要尽可能保持数据分布的一致性,避免因为数据划分过程引入额外的偏差而对最终结果产生影响。
单次留出法的到的结果可能不够可靠,在使用留出法的时候一般要多次划分重复进行试验评估最后取平均值作为留出法的评估结果。
S
和T 的大小问题
如果训练集
S
包含了绝大多数的样本,则训练出的模型会更接近于
如果测试集
交叉验证法
首先将数据集
p
次k 折交叉验证
k
折交叉验证通常要随机使用不同的划分重复
通常使用“10次10折交叉验证”。
自助法
引入的意义
在留出法和交叉验证法中,由于保留了一部分用于测试,世界评估的模型所使用的训练集
S
比
具体做法
直接以自助采样(bootstrap sampling)为基础
给定包含
m
个样本的数据集
通过自助采样,初始数据集中有大约36.8%的样本没有出现在采集数据集 D′ 中,于是可以使用 D′ 作为训练集合, D \ D′ 作为测试集合,这样实际评估模型和期望评估的模型,都使用 m 个训练样本,此时仍然有数据总量约