特征值和特征向量

EigenVector and EigenValue

一个线性变换(矩阵)对于一个向量(特征向量)的作用只体现在其长度(可以反向,也就是保留在自己张成的向量空间中)(特征值)的变化上。

特征值和特征向量(方阵)

定义:
A A n阶矩阵,如果数 λ λ n n 非零向列向量x使关系式

Ax=λx(1) (1) A x = λ x

成立,那么,这样的数 λ λ 称为矩阵 A A 特征值非零向量x称为 A A 对应于特征值λ特征向量
(1) ( 1 ) 式也可以写成
(AλE)x=0 ( A − λ E ) x = 0

这是 n n 个未知数n个方程的 齐次线性方程组,他有非零解的充分必要条件是 系数行列式
|AλE|=0 | A − λ E | = 0

即:
a11λa21an1a12a22λan2a1na2nannλ=0 | a 11 − λ a 12 ⋯ a 1 n a 21 a 22 − λ ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n − λ | = 0

上式是以 λ λ 为未知数的一元 n n 次方程,称为矩阵A特征方程
其左端 |AλE| | A − λ E | λ λ n n 次多项式,记作f(λ),称为矩阵 A A 特征多项式
几个重要性质:

(i) λ1+λ2++λn=a11+a22++ann λ 1 + λ 2 + ⋯ + λ n = a 11 + a 22 + ⋯ + a n n
(ii) ( i i ) λ1λ2λn=|A| λ 1 λ 2 ⋯ λ n = | A |

定理:
λ1,λ2,,λm λ 1 , λ 2 , ⋯ , λ m 方阵 A A m个特征值, p1,p2,,pm p 1 , p 2 , ⋯ , p m 依次是与之对应的特征向量,如果 λ1,λ2,,λm λ 1 , λ 2 , ⋯ , λ m 各不相同,则 p1,p2,,pm p 1 , p 2 , ⋯ , p m 线性无关

推论:
λ1 λ 1 λ2 λ 2 是方阵 A A 两个不同的特征值ξ1,ξ2,,ξs η1,η2,,ηt η 1 , η 2 , ⋯ , η t 分别是对应于 λ1 λ 1 λ2 λ 2 的线性无关的特征向量,则 ξ1,ξ2,,ξs,η1,η2,,ηt ξ 1 , ξ 2 , ⋯ , ξ s , η 1 , η 2 , ⋯ , η t 线性无关

添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值