EigenVector and EigenValue
一个线性变换(矩阵)对于一个向量(特征向量)的作用只体现在其长度(可以反向,也就是保留在自己张成的向量空间中)(特征值)的变化上。
特征值和特征向量(方阵)
定义:
设
A
A
是阶矩阵,如果数
λ
λ
和
n
n
维非零向列向量使关系式
成立,那么,这样的数 λ λ 称为矩阵 A A 的特征值,非零向量称为 A A 对应于特征值的 特征向量
(1) ( 1 ) 式也可以写成
这是 n n 个未知数个方程的 齐次线性方程组,他有非零解的充分必要条件是 系数行列式
即:
上式是以
λ
λ
为未知数的一元
n
n
次方程,称为矩阵的特征方程
其左端
|A−λE|
|
A
−
λ
E
|
是
λ
λ
的
n
n
次多项式,记作,称为矩阵
A
A
的特征多项式
几个重要性质:
λ1+λ2+⋯+λn=a11+a22+⋯+ann
λ
1
+
λ
2
+
⋯
+
λ
n
=
a
11
+
a
22
+
⋯
+
a
n
n
(ii)
(
i
i
)
λ1λ2⋯λn=|A|
λ
1
λ
2
⋯
λ
n
=
|
A
|
定理:
设
λ1,λ2,⋯,λm
λ
1
,
λ
2
,
⋯
,
λ
m
是方阵
A
A
的个特征值,
p1,p2,⋯,pm
p
1
,
p
2
,
⋯
,
p
m
依次是与之对应的特征向量,如果
λ1,λ2,⋯,λm
λ
1
,
λ
2
,
⋯
,
λ
m
各不相同,则
p1,p2,⋯,pm
p
1
,
p
2
,
⋯
,
p
m
线性无关。
推论:
设
λ1
λ
1
和
λ2
λ
2
是方阵
A
A
的两个不同的特征值,和
η1,η2,⋯,ηt
η
1
,
η
2
,
⋯
,
η
t
分别是对应于
λ1
λ
1
和
λ2
λ
2
的线性无关的特征向量,则
ξ1,ξ2,⋯,ξs,η1,η2,⋯,ηt
ξ
1
,
ξ
2
,
⋯
,
ξ
s
,
η
1
,
η
2
,
⋯
,
η
t
线性无关。