大数定理及中心极限定理

切比雪夫不等式

设随机变量 X X 具有数学期望E(X)=μ,方差 D(X)=σ2 D ( X ) = σ 2 ,对于任意整数 ϵ ϵ ,不等式

P{|Xμ|ϵ}σ2ϵ2 P { | X − μ | ≥ ϵ } ≤ σ 2 ϵ 2

成立
这一不等式称为 切比雪夫不等式

大数定理

(I) ( I ) 切比雪夫大数定理

X1,X2, X 1 , X 2 , ⋯ 是相互独立的,服从同一分布的随机变量序列,如果方差 D(Xk)(k1) D ( X k ) ( k ≥ 1 ) 存在且有一致上界,即存在常数 C C ,使得D(Xk)C对于一切 k1 k ≥ 1 均成立,则称序列服从大数定理:

1ni=1nXiP1ni=1nE(Xi) 1 n ∑ i = 1 n X i ⟶ P ⁡ 1 n ∑ i = 1 n E ( X i )

(II) ( I I ) 辛钦大数定理

X1,X2, X 1 , X 2 , ⋯ 是相互独立的,服从同一分布的随机变量序列,且具有数学期望 E(Xk)=μ(k=1,2,) E ( X k ) = μ ( k = 1 , 2 , ⋯ ) .作前 n n 个变量的算数平均1nk=1nXk,则对于任意 ϵ>0 ϵ > 0 ,有

limnP{1nk=1nXkμ<ϵ}=1 lim n → ∞ P { | 1 n ∑ k = 1 n X k − μ | < ϵ } = 1

辛钦大数定理的另一种描述

Y1,Y2, Y 1 , Y 2 , ⋯ 是一个随机变量序列 a a 是一个常数,若对于任意正数ϵ

limnP{|Yna|<ϵ}=1 lim n → ∞ P { | Y n − a | < ϵ } = 1

则称序列 Y1,Y2,,Yn, Y 1 , Y 2 , ⋯ , Y n , ⋯ 依概率收敛于 a a ,记为:
YnPa

依概率收敛的序列有以下性质。
XnPa X n ⟶ P ⁡ a , YnPb Y n ⟶ P ⁡ b 又设函数 g(x,y) g ( x , y ) 在点 (a,b) ( a , b ) ,则
g(Xn,Yn)Pg(a,b) g ( X n , Y n ) ⟶ P ⁡ g ( a , b )

于是辛钦大数定理可以描述为:
弱大数定理(辛钦大数定理) 设随机变量 X1,X2,,Xn, X 1 , X 2 , ⋯ , X n , ⋯ 相互独立,服从同一分布且具有数学期望 E(Xk)=μ(k=1,2,) E ( X k ) = μ ( k = 1 , 2 , ⋯ ) ,则序列 X¯¯¯¯=1nk=1nXk X ¯ = 1 n ∑ k = 1 n X k ,依照概率收敛于 μ μ ,即 X¯¯¯¯Pμ X ¯ ⟶ P ⁡ μ
辛钦大数定理的一个 重要推论:

(III) ( I I I ) 伯努利大数定理

fA f A n n 次独立重复试验中事件A发生的次数, p p 是事件A在每次试验中发生的概率,则对于任意正数 ϵ>0 ϵ > 0 有:

limnP{fAnp<ϵ}=1 lim n → ∞ P { | f A n − p | < ϵ } = 1


limnP{fAnpϵ}=0 lim n → ∞ P { | f A n − p | ≥ ϵ } = 0

中心极限定理

(IV) ( I V ) (独立同分布的中心极限定理)

设随机变量 X1,X2,,Xn, X 1 , X 2 , ⋯ , X n , ⋯ 相互独立,服从同一分布,且具有数学期望和方差: E(Xk)=μ,D(Xk)=σ2>0(k=1,2,) E ( X k ) = μ , D ( X k ) = σ 2 > 0 ( k = 1 , 2 , ⋯ ) ,则随机变量之和 k=1nXk ∑ k = 1 n X k 的标准化变量

Yn=nk=1XkE(nk=1Xk)D(nk=1Xk)=nk=1Xknμnσ Y n = ∑ k = 1 n X k − E ( ∑ k = 1 n X k ) D ( ∑ k = 1 n X k ) = ∑ k = 1 n X k − n μ n σ

的分布函数 Fn(x) F n ( x ) 对于任意 x x 满足
limnFn(x)=limnP{k=1nXknμnσx}=x12πet2/2dt=Φ(x)


标准正态分布
特别当 μ=0,σ=1 μ = 0 , σ = 1 时称变量 X X 服从标准正态分布,其概率密度和分布函数分别用ϕ(x),Φ(x)表示,既有:

ϕ(x)=12πex2/2Φ(x)=12πxet2/2dtΦ(x)=1Φ(x) ϕ ( x ) = 1 2 π e − x 2 / 2 Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 / 2 d t 容 易 得 到 : Φ ( − x ) = 1 − Φ ( x )


(V) ( V ) 二项分布以正态分布为其极限的分布定理

假设随机变量 YnB(n,p)(0<p<1,n1) Y n ∼ B ( n , p ) ( 0 < p < 1 , n ≥ 1 ) ,则对于任意实数 x x ,有

limnP{Ynnpnp(1p)x}=12πxet2/2dt=Φ(x)

中心极限定理和大数定律的区别

知乎上的回答:

大数定律是说, n n 只要越来越大,我把这n个独立同分布的数加起来去除以 n n 得到的这个样本均值(也是一个随机变量)会依概率收敛到真值μ,但是样本均值的分布是怎样的我们不知道。

中心极限定理是说, n n 只要越来越大,这n个数的样本均值会趋近于正态分布,并且这个正态分布以 n n 为均值,σ2/n为方差。

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值