交叉熵cross-entropy loss 最大化似然函数,最小化负的似然对数函数 最终的交叉熵损失函数,最小化该loss: nn.BCELoss def criterion(yhat, y): out = -1 * torch.mean(y*torch.log(yhat) + (1-y) * torch.log(1-yhat)) return out softmax