shopee——排序模型AUC还能涨吗?

本文探讨了CBMRMultiCBMRSampleWeightAssignment模型,一种用于点击率预测的多任务推荐系统。它考虑了用户和商品的top-k邻居,通过权重设计和平滑处理实现个性化。特别关注新用户与忠诚用户对不同任务指标的差异性处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CBMR

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

MultiCBMR

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


Sample Weight Assignment

  • Click-aware Structure Transfer with Sample Weight Assignment for Post-Click Conversion Rate Estimation

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  • 每个用户的top-k 邻居
  • 每个商品的top-k 邻居
  • 平滑处理并构图
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 交叉熵函数
  • 前面的权重设计

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


多任务推荐模型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 新用户:下单少
    在这里插入图片描述
  • 忠诚用户:平台熟悉,下单多

在这里插入图片描述
在这里插入图片描述

  • 不同用户群体对于不同任务指标的偏好大相径庭

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

uncle_ll

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值