《Enemies》完整项目文件现可免费下载

UnityDemo团队在GDC2022和2023上展示了《Enemies》数字人电影预告片,利用HDRP、实时光线追踪、DLSS等技术实现了发丝渲染、逼真面部动画和Ziva机器学习模拟。该项目文件现可在UnityAssetStore免费下载,供开发者学习和探索高级数字人物制作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Enemies》 是 Unity Demo 团队在去年 GDC 2022 上发布的一支数字人电影式预告片,在此前的数字人短片 《异教徒(The Heretic)》 的基础上进行了一次拓展,以 4K 分辨率的实时渲染 展示了眼睛、头发和皮肤渲染等方面的重大突破 ( 在 GDC 2022 中的项目回顾 )。
在今年的 GDC 2023 上,我们很高兴地宣布, 《Enemies》的完整项目文件 现已可以在 Unity Asset Store 上免费下载 。
在《Enemies》项目中,所有新出的、开发中的和已推出的 Unity 图形和核心功能都被发挥到了极致,包括各系统之间流畅地协调运行,以提高整体图像质量。具体来说,《Enemies》用到了 Unity 的高清渲染管线(HDRP)中的所有技术、屏幕空间全局光照(SSGI)、新的 Adaptive Probe Volumes(适应性探针体积)、实时光线追踪、NVIDIA 深度学习超采样(DLSS)以及其他为实现短片艺术效果所使用的大大小小的功能。

项目亮点

Strand-based Hair Solution 基于发丝的头发渲染方案

全新的发丝级头发渲染方案开发于《Enemies》项目期间,是一种用于头发创作、模型蒙皮、发丝模拟和头发渲染的一体化解决方案,可以应用在数字人和数字生物上,用于写实或风格化的项目。此系统兼容所有能够输出以 Alembic 为文件格式的发型数据,因此你可以自由选择创作工具以创建角色的发型。在《Enemies》中,我们使用了 Maya XGen 来制作头发,我们也正在通过 Weta Barbershop 验证这一流程。Hair 系统也可以兼容你所选择的着色器,你可以在任何一种渲染管线中使用它。这一头发系统目前支持高清渲染管线(HDRP)、通用渲染管线(URP)和内置渲染管线。
为了使头发和短毛看起来更真实,Unity 为 HDRP 开发了 Hair 着色,其效果与特效电影和动画电影中所用的模型类似(比如 Marschner、迪士尼的电影)。我们能够使用该技术在每种光线条件下创造出更精致的视效,而不需要特意改变参数来取得较高的性能。
Hair 渲染可以高效地渲染非常细的发丝 ,还能有效防止因发丝过细导致无法正确地光栅化所造成的锯齿。在《Enemies》中,我们在一个可见度缓冲区中多次采样,以减少发丝过细所产生的锯齿,而发丝的着色则是在一张单独的着色图集中完成的,独立于发丝的可见度。
这项技术已作为实验性软件包 (com.unity.demoteam.hair) 包含在此《Enemies》项目文件中,附 使用教程

提升面部的逼真程度

在《Enemies》中,我们选择了一名 40 多岁的女演员作为主角,这位演员更符合故事的背景,也带来了新层次的技术挑战。
首先,主角浅色的皮肤更为透明,因此在移动和说话时面部毛细血管会更明显,我们专门为此开发了一种 张力技术 。角色的面部还带有较为突显的皱纹,需要在着色和光照上特别注意。角色的眼睛更是有一系列独特的挑战(其中一些已经解决)。为了增强眼球的写实感,我们还添加了 焦散(Caustic)效果 。角色面部的“桃毛”或汗毛为皮肤添加了微妙且重要的真实感,我们通过将 Skin Attachment 系统 移到 GPU 上计算来完成这部分毛发的渲染。
这些技术已整合至 Unity 数字人软件包 (com.unity.demoteam.digital-human),亦包含在此《Enemies》项目文件中。

《Enemies》最终渲染版本展示了 Ziva 技术的集成如何为我们的主角带来新的生命力。
Ziva 在 VFX 行业拥有多年的经验,持续研究先进技术,帮助游戏、线性内容制作和实时项目实现更高的动画质量。其基于机器学习(ML)的技术能模拟出极度逼真的面部动画及身体与肌肉的形变。
为了实现《Enemies》高度写实的画面,Ziva 使用了 机器学习 与 4D 数据捕捉 ,这比传统的 3D 演员扫描流程多了一个维度。原本静态、不可编辑的 4D 面部表演现在变成了一个 带面部骨架的实时布偶 ,可以随时添加动画或调整面部绑定,同时维持高保真度。新发布的 Ziva Face Trainer 是基于全面 4D 数据库和机器学习算法打造的,可以将任何 3D 人脸模型快速转换为高性能的实时人脸布偶,只需要数分钟即可为任何面部网格制作动画。通过零骨骼绑定实现丰富的实时 3D 动态、全面的表情控制和用户驱动的动画输入,而无需捕捉额外的 4D 数据。
在创作《Enemies》的过程中,Unity 以 4D 数据为基础训练了一种 机器学习模型 ,它可用于任何内容演出。最终,原本 3.7GB 大的面部骨架被精简至 50MB,并且所有 4D 表演中的细节也都得以保留。这项技术能用轻量化动画数据完成最终动画,并以更高效的方式创作实时动画。
*《Enemies》的表演被应用到另一个布偶上,展示于 SIGGRAPH 2022
此《Enemies》项目文件中就包含了我们使用 Ziva 实现的高性能输出,以及用于在 Unity 中导入和播放这些输出的免费 Unity ZivaRT Player (在 zivaRT 文件夹中)。
探索更多 Unity 在数字人领域的前沿技术,欢迎下载 Enemies - demo project 学习。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值