【人工智能的数学基础】超球面上的von Mises-Fisher(vMF)分布

本文介绍了von Mises-Fisher(vMF)分布,这是一种定义在超球面上的概率分布,常用于自然语言处理等领域。文章详细讲解了vMF分布的数学基础,包括概率密度函数、凝聚度κ的影响以及特殊情况下(κ=0和μ=[1,0,...,0])的采样方法。当κ=0时,分布退化为超球面的均匀分布,而当κ>0且μ=[1,0,...,0]时,可通过特定的球坐标变换和采样策略进行采样。vMF分布的一阶矩与参数ξ方向相同,采样过程涉及概率密度的计算和数值稳定性的处理。" 129870770,18092574,前端开发面试攻略:如何准备与提升,"['前端开发', '面试']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值