作者:禅与计算机程序设计艺术
1. 简介
随着深度学习技术的发展、深层神经网络的普及和应用的广泛化,训练大型神经网络模型已成为当下热点话题。而模型压缩(model pruning) 是近年来深度学习领域的一个重要研究方向,通过对模型权重进行裁剪或删除冗余信息,可以有效减少模型大小、降低计算复杂度、提升推理性能等作用。
然而,模型压缩的“利”与“弊”一直被讨论不休,在本文中,我将从 “成本-收益” 两个维度,逐一分析模型压缩技术背后的经济、社会、工程三个角度上存在的问题和优劣。
首先,模型压缩技术自身具有一定的经济性价比。模型压缩往往能够实现模型性能的显著改善,并且压缩后模型所占用的存储空间也相对较小。因此,很多时候,压缩的目的就是为了节省模型的体积并减少模型的计算量,以换取更高的准确率或推理速度。由于模型压缩技术的普及性和效用性,其终端用户往往难以准确衡量其带来的经济收益和社会影响。于是在现有的经济制度下,许多研究机构开始探索如何衡量模型压缩技术的长期经济影响。
其次,模型压缩技术在优化模型精度、减少计算量方面发挥了巨大的作用。虽然现代神经网络模型已经具有很高的分类和检测