作者:禅与计算机程序设计艺术
1.简介
“智能”工厂是指由机器人、传感器、网关、工控系统等智能化装置组成的工业现场。其中,深度学习在智能工厂中可以用于图像识别、视频监控、异常事件检测、故障诊断、缺陷检测、缺陷分类等方面提供高效、准确的数据处理能力。通过对工厂环境及制造流程进行实时监测和分析,可以提升工人的生产效率和产品质量。本文将从基础理论出发,结合实际案例,介绍智能工厂中深度学习的理论基础、应用场景、关键问题以及优化策略。
2.基本概念术语说明
概念
深度学习(Deep Learning)是一门研究具有多层次结构的深层神经网络的学科。它的主要特点是端到端训练,能够进行特征学习、表征学习、模式识别、回归分析等高级分析任务。深度学习已经成为各行各业的热门话题。如今,深度学习技术已广泛应用于图像识别、文本信息处理、生物信息分析、金融分析、医疗健康领域等多个领域。
术语
- 数据集(Dataset):用于训练模型的数据集合。
- 模型(Model):用来表示输入和输出关系的函数或过程。
- 损失函数(Loss Function):衡量模型预测值与真实值的差距。
- 优化器(Optimizer):计算模型更新参数的算法。
- 超