基于AutoML 方法——贝叶斯优化方法实现自动化设置分布式系统中超参数 Automatic Hyperparameter Tuning for Distributed Systems

本文介绍了如何使用贝叶斯优化方法进行自动化超参数调优,尤其是在分布式系统中的应用。相较于网格搜索和随机搜索,贝叶斯优化能提供全局视角,更有效地找到全局最优解。通过定义搜索空间、策略和执行策略,作者展示了如何在ResNet-50模型上应用贝叶斯优化,以优化学习率、权重衰减、dropout率等超参数,提高模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

高维超参数(Hyperparameters)设置对于优化模型训练、系统架构设计、机器学习管道配置等任务都非常重要。然而,在分布式系统中运行这些任务时,每个节点需要不同的超参数配置。自动化超参数调优(AutoML)方法应运而生,通过探索一系列可能的参数组合来找到最佳的超参数值,从而提升性能。现有的 AutoML 方法主要基于黑盒搜索的方法,比如网格搜索、随机搜索等。然而,这种方法缺乏全局视角和贝叶斯优化的特点,容易陷入局部最优解,难以取得理想的结果。为了解决这一问题,本文提出了一种新的 AutoML 方法——贝叶斯优化方法(Bayesian optimization)。

2. 相关工作

分布式系统中超参数设置是一个具有挑战性的问题。由于数据量和计算资源有限,优化过程需要依赖于很多因素,如算法选择、神经网络架构、超参数选择等。超参数设置的有效方法还有基于经验的元启发式方法、遗传算法等。但这些方法往往效率低下,只能得到局部最优解,难以找到全局最优解。因此,自动化超参数调优的方法呼之欲出。

有两种流行的自动超参数调优方法,即网格搜索法和随机搜索法。网格搜索法通过枚举所有可能的超参数配置并尝试优化目标函数,从而找到全局最优解。随机搜索法则是随机选择一个超参数配置并尝试优化目标函数,直到找到全局最优解。随机搜索法速

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值