作者:禅与计算机程序设计艺术
1.简介
Variational autoencoder(VAE)是一种自编码器模型,它可以用来学习高维数据的分布,并将其映射到一个低维空间。这是因为VAE可以捕获输入数据中的所有不确定性,并且可以使用生成模型进行后续预测或重建。
VAE的本质是通过找到一种有效的方式来学习高维数据空间的概率分布,从而使得潜在变量能够代表原始数据的某种隐含模式。这种隐含模式可能包含一些重要的特征或者结构信息。VAE使用了变分推断方法,使得潜在变量能够生成新的数据样本,并且能够很好地拟合输入数据上的分布。此外,VAE还可以保证生成样本的质量。
2.基础概念术语说明
下面对VAE相关的一些基础概念和术语做一下简单的介绍。
2.1 概率分布
在机器学习中,概率分布是指给定一组参数,描述随机变量取值的分布函数。一般情况下,随机变量通常是一个向量或矩阵,表示一组观测值,而其对应于某个随机过程(例如,图像、声音信号)。给定这些参数后,我们可以通过概率密度函数(pdf)或者概率密度估计(estimate)来估计概率分布。概率分布的特点包括均值和方差,前者代表随机变量的期望值,后者代表随机变量的方差或标准差。
从统计学的角度上看,随机变量的样本空间可以用函数来刻画&