VAE 自编码器模型简介:学习高维数据的分布,并将其映射到一个低维空间 Variational Autoencoders Explained

本文介绍了变分自编码器(VAE),一种用于学习高维数据分布并映射到低维空间的模型。VAE通过变分推断方法捕捉不确定性,生成新的数据样本。文章详细阐述了概率分布、联合概率与条件概率、正则化项等基本概念,并讲解了VAE的核心算法原理和具体操作步骤,包括编码器、解码器和变分分布的作用。VAE已在图像、文本等领域得到应用,但也面临模型解释性和可解释性较弱等问题,未来研究将关注这些问题的解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

Variational autoencoder(VAE)是一种自编码器模型,它可以用来学习高维数据的分布,并将其映射到一个低维空间。这是因为VAE可以捕获输入数据中的所有不确定性,并且可以使用生成模型进行后续预测或重建。

VAE的本质是通过找到一种有效的方式来学习高维数据空间的概率分布,从而使得潜在变量能够代表原始数据的某种隐含模式。这种隐含模式可能包含一些重要的特征或者结构信息。VAE使用了变分推断方法,使得潜在变量能够生成新的数据样本,并且能够很好地拟合输入数据上的分布。此外,VAE还可以保证生成样本的质量。

2.基础概念术语说明
下面对VAE相关的一些基础概念和术语做一下简单的介绍。
2.1 概率分布
在机器学习中,概率分布是指给定一组参数,描述随机变量取值的分布函数。一般情况下,随机变量通常是一个向量或矩阵,表示一组观测值,而其对应于某个随机过程(例如,图像、声音信号)。给定这些参数后,我们可以通过概率密度函数(pdf)或者概率密度估计(estimate)来估计概率分布。概率分布的特点包括均值和方差,前者代表随机变量的期望值,后者代表随机变量的方差或标准差。

从统计学的角度上看,随机变量的样本空间可以用函数来刻画&

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值