生成模型在计算机视觉、自然语言处理、推荐系统中的应用和研究

本文介绍了生成模型在计算机视觉、自然语言处理、推荐系统中的应用,涵盖基本概念、核心算法如贝叶斯推断、EM算法、MCMC,以及VAE、GAN和Seq-GAN的模型实现。通过实例展示了如何在MNIST数据集上应用这些模型。
摘要由CSDN通过智能技术生成

作者:禅与计算机程序设计艺术

1.简介

随着计算机的飞速发展,人工智能技术的逐渐成熟,越来越多的人开始关注这个新兴的领域,开始开发出新的产品和服务。
在这个信息爆炸的时代,数据量的呈几何级增长,需要人们对海量数据的分析、处理和决策,而机器学习就是人工智能的一个重要组成部分。
从传统的统计学习到深度学习(如卷积神经网络CNN),人工智能技术不断的进步,已经引起了很大的社会影响。
在这个过程中,生成模型是一个非常重要的工具,它可以用来帮助理解复杂的数据集。通过训练一个生成模型,可以从父亲的基因中产生出一个系列可能的孩子的基因序列,
并通过自我复制机制,对这个序列进行迭代进化,生成一系列的可行解。
这篇文章主要阐述的是生成模型在计算机视觉、自然语言处理、推荐系统中的应用和研究,并通过开源框架、开源模型和开源库等方式分享给广大的科研工作者和工程师。
此外,我们也希望借助这一篇文章,激发更多的同仁对生成模型的研究和创新有更深入的了解和实践。

2.基本概念术语说明

定义及其特性

定义:生成模型是基于数据学习过程,用已知数据生成模拟数据的模型,通常由一个潜在变量X(或Z)和一个观测变量Y构成。在生成模型中&#

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值