作者:禅与计算机程序设计艺术
1.简介
Probabilistic PCA (PPCA) 是一种非监督的降维技术。其原理类似于线性降维,但是 PPCA 模型是基于数据分布而不是样本点的值来训练模型。与一般的线性降维方法不同的是,PPCA 的训练过程不是为了最小化均方误差或者其他损失函数,而是为了最大化期望似然。 PPCA 是在机器学习的最前沿领域中被应用得非常成功的一个分支。它不仅能够保留数据中重要的信息,而且可以处理高维数据的缺陷。这种能力对于科研、工程等各个领域都很有用。 PPCA 的基本想法是在数据分布上进行特征提取,因此其结果具有很强的鲁棒性。具体地说,PPCA 可以从数据中发现结构信息(比如局部模式)并且保持这些信息之间的独立性(避免“共线性”现象)。
2.概述
2.1 传统线性降维
在机器学习中,线性降维是指通过一些变换将数据从一个更高的维度映射到一个较低的维度的过程。通常,线性降维方法包括主成分分析 (PCA),核学习 (Kernel learning),以及自动编码器 (Auto-Encoder)。
PCA 是一种最流行的线性降维方法,特别是在解决数据维度灾难时被广泛应用。PCA 通过找到最适合数据的奇异值分解 (SVD) 来实现降维。所谓 SVD,就是将数据矩阵分解为三个矩阵相乘的形式:$X = UDV^{T}$。其中 $