【机器学习】Probabilistic PCA: An Introduction and Tutorial

本文介绍了概率主成分分析(PPCA)作为一种非监督降维技术,对比了传统线性降维方法如PCA的局限性。PPCA通过最大化期望似然来学习模型,具有对数据分布进行特征提取的能力,尤其适用于处理高维数据。文章详细讲解了PPCA的原理,包括最大后验概率估计、协同概率分布和结构矩阵,并提供了鸢尾花和手写数字数据集的实例,展示了PPCA在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

Probabilistic PCA (PPCA) 是一种非监督的降维技术。其原理类似于线性降维,但是 PPCA 模型是基于数据分布而不是样本点的值来训练模型。与一般的线性降维方法不同的是,PPCA 的训练过程不是为了最小化均方误差或者其他损失函数,而是为了最大化期望似然。 PPCA 是在机器学习的最前沿领域中被应用得非常成功的一个分支。它不仅能够保留数据中重要的信息,而且可以处理高维数据的缺陷。这种能力对于科研、工程等各个领域都很有用。 PPCA 的基本想法是在数据分布上进行特征提取,因此其结果具有很强的鲁棒性。具体地说,PPCA 可以从数据中发现结构信息(比如局部模式)并且保持这些信息之间的独立性(避免“共线性”现象)。

2.概述

2.1 传统线性降维

在机器学习中,线性降维是指通过一些变换将数据从一个更高的维度映射到一个较低的维度的过程。通常,线性降维方法包括主成分分析 (PCA),核学习 (Kernel learning),以及自动编码器 (Auto-Encoder)。

PCA 是一种最流行的线性降维方法,特别是在解决数据维度灾难时被广泛应用。PCA 通过找到最适合数据的奇异值分解 (SVD) 来实现降维。所谓 SVD,就是将数据矩阵分解为三个矩阵相乘的形式:$X = UDV^{T}$。其中 $

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值