AlphaGo的发展历程、基础知识、核心算法、模型结构、训练数据、测试环境等

本文详细介绍了AlphaGo的发展历程,从基本概念到核心算法,包括强化学习、蒙特卡洛树搜索、神经网络以及自我对弈等关键技术。通过对棋盘局势的分析、模型设计和训练过程的探讨,揭示了AlphaGo如何成为最先进的AI模型之一。此外,还提供了代码实例,帮助读者理解其实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

AlphaGo,是Google在2016年提出的基于强化学习(reinforcement learning)的视频游戏AI模型。它由蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)、神经网络和对棋盘局势的高级特征工程(advanced board-state feature engineering)等组成。其战胜人类顶尖棋手围棋选手李世石,击败国际象棋世界冠军柯洁斯基等多项围棋比赛。它也被认为是目前最先进的AI模型之一。

随着人工智能(AI)领域的不断革新与进步,AlphaGo的模型也在不断更新和完善中。这份技术文档将记录AlphaGo的整个发展历程,并从AI的历史角度出发探讨它的演变及未来的发展方向。希望通过这一技术文档,能够帮助读者更全面地了解AlphaGo的发展历程、基础知识、核心算法、模型结构、训练数据、测试环境以及当前的研究和应用现状。

2.基本概念术语说明

2.1 AlphaZero

AlphaZero,是由Deepmind于2017年发表的一系列工作的统称。它是一种结合了蒙特卡洛树搜索(MCTS)与神经网络的训练方法,目的是开发一种可以直接从游戏板上获取输入图像、通过组合神经网络计算决策并落子的机器人。由于这种方式避免了暴力穷举搜索,使得AlphaZero取得了非常优异的性能。

<

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值