作者:禅与计算机程序设计艺术
1.简介
支持向量机(Support Vector Machine,SVM)是一种用于分类和回归的机器学习模型,其特点在于通过构造超平面将数据划分到多个空间中,使得每一个数据点都在超平面的正负方向上。因此SVM可广泛应用于模式识别、图像处理、生物信息、文本分类、网络安全等领域。
2.Basic Concepts and Terminology
2.1 Supervised Learning Problem Formulation
SVM作为监督式学习方法,所要解决的问题可以描述为:给定一个训练样本集合$D={(x_i,y_i)}{i=1}^{n}$,其中$x_i\in R^p$表示输入变量,$y_i \in {-1,+1}$表示输出变量(类别标签),试求解能够最大化训练集目标函数$F(w,b)$,即: $$ \max{w,b}\sum_{i=1}^ny_i(wx_i+b)-\frac{1}{2}\sum_{i=1}^n\sum_{j=1}^n\alpha_i\alpha_jy_iy_jx_i^Tx_j $$ 其中$\alpha_i>0$, $\forall i$. $F(w,b)$为经验风险(empirical ris