Support Vector Machines (SVMs) Introduction The Math b

本文介绍了支持向量机(SVM)的基础概念,包括监督学习问题、优化目标函数、Hinge Loss,核心算法的原始优化和对偶优化,并探讨了核技巧在高维空间的应用。此外,还提供了SVM用于二分类的Python代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

支持向量机(Support Vector Machine,SVM)是一种用于分类和回归的机器学习模型,其特点在于通过构造超平面将数据划分到多个空间中,使得每一个数据点都在超平面的正负方向上。因此SVM可广泛应用于模式识别、图像处理、生物信息、文本分类、网络安全等领域。

2.Basic Concepts and Terminology

2.1 Supervised Learning Problem Formulation

SVM作为监督式学习方法,所要解决的问题可以描述为:给定一个训练样本集合$D={(x_i,y_i)}{i=1}^{n}$,其中$x_i\in R^p$表示输入变量,$y_i \in {-1,+1}$表示输出变量(类别标签),试求解能够最大化训练集目标函数$F(w,b)$,即: $$ \max{w,b}\sum_{i=1}^ny_i(wx_i+b)-\frac{1}{2}\sum_{i=1}^n\sum_{j=1}^n\alpha_i\alpha_jy_iy_jx_i^Tx_j $$ 其中$\alpha_i>0$, $\forall i$. $F(w,b)$为经验风险(empirical ris

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值