作者:禅与计算机程序设计艺术
1.简介
文本分类(text classification)是一个自然语言处理任务,它通过对输入文本进行分析、理解并赋予其类别标签,从而实现信息的自动提取、过滤、归纳和结构化。许多任务都需要对文本进行分类,如新闻分类、垃圾邮件识别、情感分析等。文本分类方法主要分为基于规则的方法和机器学习的方法。本文将采用scikit-learn库中的朴素贝叶斯分类器(naive Bayes classifier)实现中文文本分类任务,并且展示如何对中文文本进行预处理、特征选择和模型评估。文章内容如下:
1.背景介绍
中文文本分类任务一直是自然语言处理领域中的一个热门研究课题,随着深度学习的发展,传统的基于规则的方法已被现代的机器学习方法所超越。然而,在中文文本分类领域,基于规则的方法却还存在很多限制。其中一个主要原因是中文的特殊性质,例如字符之间的关联性、词汇语义变化等。另外,由于中文语料库规模庞大、特殊性质复杂、词汇表量级巨大,基于规则的方法往往无法有效处理这些难以解决的问题。因此,本文将讨论如何利用机器学习技术进行中文文本分类,并以scikit-learn库中的朴素贝叶斯分类器(naive Bayes classifier)作为例子,展示如何进行中文文本分类的基本流程。本文假设读者具有以下知识背景:机器学习的基本概念、scikit-learn库的使用、Python编程基础。