企业级无人机协同工作平台

本文介绍了无人机协同工作的重要性和挑战,重点探讨了基于深度强化学习(DRL)的任务分配算法在企业级无人机协同工作平台(UCWP)中的应用。通过环境、智能体、策略和训练的解释,展示了DRL如何优化任务执行、资源分配和路径规划。未来,UCWP将在多级任务协同、资源共享和任务优先级调整等方面发展,以应对更多领域的应用需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

无人机(UAV)作为新时代人类交通手段之一,在各行各业都发挥着越来越重要的作用。无人机可以完成各种高难度的任务,比如通过多任务分配、实时监控、导航等功能实现高效率的工作;也可以用于辅助军事、科技、农业、测绘、气象、水利等领域,极大提升生产效率。无人机协同工作是指多个无人机共同完成一个复杂任务。传统的无人机协同工作主要依赖于雷达、激光雷达、GPS等传感器进行坐标信息的共享,这样的方法存在局限性,不适合满足复杂环境下的任务协同需求。而随着人工智能技术的不断发展,基于机器学习、强化学习、分布式计算等理论和方法的研究,无人机协同工作也逐渐由传统方式转向更加灵活、高效、智能化的方式。在这种情况下,如何将无人机协同工作平台设计得更加灵活、智能、安全、可靠,成为真正意义上的企业级产品,是值得深入探讨和研究的问题。

2019年,华为举办了“AI+无人机”国际创新大赛,并邀请多家公司参与该项比赛。其中,浙江航天无人机研究所竞赛组给出了一个基于深度强化学习的无人机协同工作平台,该平台具有良好的任务管理能力、自动巡逻能力、自适应路径规划能力等优秀特性。另外,微软、英特尔等科技巨头也在积极推进无人机协同工作相关领域的研究,但由于主流的研究都是以传感器为中心,且缺乏系统的整体架构,使得其研发成本较高,难以应用到实际的商业中。因此,如何开发一套企业

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值