作者:禅与计算机程序设计艺术
1.简介
近年来,强化学习(Reinforcement Learning)在机器学习、自动驾驶、强化学习等领域均取得了突破性进展,得到了广泛应用。它能够有效地解决复杂系统中的非平稳分布决策问题,并自适应地调整策略以更好地完成任务。因此,在实际生产环境中,许多复杂系统都需要借助强化学习方法进行有效控制。 本文将从强化学习的理论基础、控制系统、强化学习算法三方面对复杂系统控制问题进行阐述。首先,介绍一下什么是强化学习,它能给我们带来什么样的便利。然后介绍控制系统相关知识,介绍一些控制系统的基本知识,包括系统模型、不确定性、性能指标、可靠性评估。接着介绍一些强化学习算法及其特点。最后,通过具体的代码例子介绍如何用强化学习解决复杂系统的控制问题。
2.什么是强化学习?
强化学习(Reinforcement Learning,RL)是机器学习领域的一种研究问题,旨在训练智能体(Agent)从一组初始状态并接收反馈(即奖励和惩罚)的方式,基于环境(Environment)提供的动作序列,最大化累积奖励(即总回报)。强化学习可以看做是一个交互式的优化过程,即智能体与环境相互作用,并在学习过程中不断试错,逐渐提升自身的能力,最终达到最优解。 简单来说,强化学习就是让一个智能体通过不断与环境的交互,学习到通过一系列行为获得的奖赏,并选择那些会让自己获得奖赏的行为,从而实现自我学习、自我完善的目标。换句话说,强化学习是一个用于指导行动的工具。 强化学习最重要的特征之一是它能够在复杂的决策空间中找到全局最优解。这是因为它将环境建模成一个马尔科夫决策过程(Markov Decision Process,MDP),并利用动态规划算法求解该过程的

本文详细介绍了强化学习的基本概念,控制系统的基础知识,包括系统模型、不确定性与性能指标,并探讨了Q-learning、DQN及基于模型的强化学习算法。通过具体的代码实例展示了如何运用强化学习解决复杂系统的控制问题。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



