作者:禅与计算机程序设计艺术
一、简介:什么是K-Means算法?
K-Means算法简介
K-Means是一个无监督学习算法,主要用于聚类,其目标是将数据集划分到K个子集中,使得各个子集之间相互独立,每个子集又尽可能地同类,但不同子集之间的样本分布可能存在差异。K-Means算法运用迭代法进行多次更新,直至收敛或达到最大迭代次数。
聚类的定义:聚类是一种无监督的机器学习方法,利用某种划分准则将相似数据归于一类,使得数据具有共性并提高分类效率。聚类的方法通常包括层次聚类(Hierarchical Clustering)、K-均值聚类(K-means Clustering)等。K-Means算法的基本思想是:给定初始的K个中心向量,然后通过不断迭代计算将数据集划分成最佳的K个簇,同时将每一个样本分配到离它最近的中心上。
K-Means的基本假设是:数据可以划分为K个簇,并且每个样本属于簇的概率正比于该簇内的样本数量,即密度正比于样本密度。因此,K-Means算法首先随机选择K个中心向量,然后重复两步过程,直至收敛或达到最大迭代次数。第一步是将数据集中的所有样本随机初始化到K个中心向量中;第二步是对每个样本,计算其与当前的K个中心向量的距离,然后将其分配到距其最近的中心。经过多轮迭代后,各个中心向量的位置和形状逐渐收敛到最终稳定的状态。
算法特点
- 简单有效:K-Means算法的复杂度是NP难度级别,但它的效率很高,可以达到线性时间复杂度。另外,K-Means算法是一个中心点初始化的贪心算法,不需要先验假设,也不需要对数据的预处理。

本文介绍了K-Means算法的基础知识,包括其定义、特点、应用场景和算法流程。K-Means是一种无监督学习的聚类算法,适用于图像压缩、文本聚类和数据挖掘等领域。文章还提供了实践环境的搭建和运行测试,通过Python的NumPy和Matplotlib库展示了如何创建和训练K-Means模型,并解释了算法的实现步骤。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



