Unbiased Pairwise Consistency Regularization for SemiSu

本文介绍了Unbiased Pairwise Consistency Regularization (UPCR)方法,这是一种解决半监督学习中不平衡分布问题的策略。UPCR利用先验知识和标签关系,使模型更关注类别内部的标签一致性,提高模型性能和鲁棒性。通过对标签相似性和局部采样折衷,UPCR在减少噪声和不平衡影响的同时,降低了计算复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

Semi-supervised learning(SSL)方法已经在图像、文本、语音、视频等多种领域中得到了广泛应用。然而,尽管目前已有很多研究成果表明SSL的效果非常好,但仍存在一些挑战。比如,SSL学习到的分布往往很难满足真实数据的要求(例如特定目标的不平衡分布),导致模型在实际任务上可能产生性能瓶颈。另外,训练SSL模型通常需要大量标注数据,这给整个过程引入了很大的计算负担。因此,如何提升SSL方法的鲁棒性、效率和性能是当前面临的难题。

本文将介绍一种新的基于pairwise consistency的SSL方法——Unbiased Pairwise Consistency Regularization (UPCR)。UPCR利用先验知识的标签信息,对训练样本之间的标签关系进行建模,使得同类别标签之间的差异更加平滑,从而消除“困难样本”带来的不平衡影响,并达到与baseline相当甚至更好的性能。UPCR方法能够将每个类别内部的样本分布调整到均匀状态,同时还可以减少不同类的标签相关性。

本文主要基于以下观点:

1)传统的SSL方法通常采用全局的方式进行标签分类,而忽略了不同类别之间的相似性,导致它们之间标签的偏斜程度无法保持一致。

2)一个可行的方案是在标签相似性和局部采样间找到一个折衷,使得模型在训练过程中更加关注相

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值