作者:禅与计算机程序设计艺术
1.简介
近年来图神经网络(Graph Neural Network, GNN)在推荐系统领域受到了越来越多关注。图神经网络是在图数据结构上定义的神经网络模型,可以有效地处理高维稀疏数据的局部和全局特征。GNN可以用于多种推荐场景,包括推荐系统、社会关系分析、知识图谱等,能够自动学习并提取出节点之间的相互关系,从而实现准确且精准的推荐。本文将从GNN的演进过程及其在推荐系统中的应用入手,对图神经网络在推荐系统领域的发展进行全面的回顾和总结,并给出图神经网络在推荐系统中的特点、分类以及未来的发展方向。
2.相关工作与技术
2.1相关工作
在推荐系统中,用户-物品(user-item)推荐(Recommender System)算法通常采用协同过滤(Collaborative Filtering, CF)、基于内容的推荐(Content-based Recommendation, CBR)或其他机器学习模型,这些模型通过用户与商品之间关联的历史行为数据构建起用户-商品交互图(User-Item Interaction Graph),通过对图的分析预测用户对未知商品的偏好。例如,在电子商务网站上的购物篮分析可用于推荐相关产品;在音乐播放器上,基于历史记录推荐音乐曲目等。 传统的协同过滤方法简单直接,但无法捕捉到用户之间的复杂社交关系,如好友推荐、共同喜好的偏好等;