Graph Neural Networks for Social Recommendation: A Surv

本文详细介绍了图神经网络(GNN)在推荐系统中的应用,包括用户邻接表示模型(UNM)和图注意力网络模型(GATN),探讨了GNN在多样性特征学习、复杂网络分析和增强学习等方面的优势。文章还分析了推荐系统面临的挑战,如数据规模大、噪声多、隐式特征丰富等问题,并展望了GNN在推荐系统未来发展的趋势,如模型多样化、使用场景多样化、实用性和硬件加速。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

近年来图神经网络(Graph Neural Network, GNN)在推荐系统领域受到了越来越多关注。图神经网络是在图数据结构上定义的神经网络模型,可以有效地处理高维稀疏数据的局部和全局特征。GNN可以用于多种推荐场景,包括推荐系统、社会关系分析、知识图谱等,能够自动学习并提取出节点之间的相互关系,从而实现准确且精准的推荐。本文将从GNN的演进过程及其在推荐系统中的应用入手,对图神经网络在推荐系统领域的发展进行全面的回顾和总结,并给出图神经网络在推荐系统中的特点、分类以及未来的发展方向。

2.相关工作与技术

2.1相关工作

在推荐系统中,用户-物品(user-item)推荐(Recommender System)算法通常采用协同过滤(Collaborative Filtering, CF)、基于内容的推荐(Content-based Recommendation, CBR)或其他机器学习模型,这些模型通过用户与商品之间关联的历史行为数据构建起用户-商品交互图(User-Item Interaction Graph),通过对图的分析预测用户对未知商品的偏好。例如,在电子商务网站上的购物篮分析可用于推荐相关产品;在音乐播放器上,基于历史记录推荐音乐曲目等。 传统的协同过滤方法简单直接,但无法捕捉到用户之间的复杂社交关系,如好友推荐、共同喜好的偏好等;

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值