推荐系统——未来研究方向与发展方向

推荐系统是基于用户行为数据的信息过滤技术,广泛应用于电商、社交等领域。本文介绍了用户行为数据、协同过滤算法(包括User-based和Item-based)以及召回算法,并探讨了深度学习在推荐系统中的应用。通过具体代码实例,展示了如何实现这些推荐算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

推荐系统(Recommendation System)是一种基于用户行为数据的信息过滤、排序和个性化服务的技术。它广泛应用于电子商务、网上购物、微博客等互联网产品和服务。通过对用户在不同场景下的历史行为数据分析,推荐系统能够帮助用户快速找到感兴趣的信息,提升用户体验和商业利益。目前,推荐系统已成为十分重要的技术领域之一,已经涉及到多个行业和领域,比如电影、音乐、电视剧、食品、服装、健康、金融等。

2.基本概念术语说明

2.1 用户行为数据

推荐系统从用户行为数据中学习,主要包括如下几类信息:

  • 观看行为(Viewing Behavior):用户观看某个物品或电影、电视节目等的行为记录;
  • 点击行为(Click Behavior):用户点击某个链接、按钮、选项卡等的行为记录;
  • 搜索行为(Searching Behavior):用户进行搜索查询的行为记录;
  • 交互行为(Interactive Behavior):用户与系统之间发生的互动记录,如点击某个商品、评论等;
  • 评价行为(Evaluating Behavior):用户对某件物品的评价和反馈记录;
  • 操作行为(Operatin
评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值