作者:禅与计算机程序设计艺术
1.简介
支持向量机(Support Vector Machine, SVM)是一种二类分类器,它在解决线性可分情况下,对数据进行间隔最大化或最小化,使两类数据点之间的距离最大化或最小化。SVM的主要优点就是处理复杂的数据集和高维特征空间,而且它的求解速度也非常快。
很多公司都在使用SVM作为机器学习模型,包括推荐系统、文本分类、图像识别等领域。在本文中,我们将通过案例来介绍SVM应用的一般场景以及特别适合用SVM进行解决的问题。
2.背景介绍
2.1 案例一:商品推荐系统
假设有一个电商网站,要实现个性化商品推荐给用户。为了提升用户体验和转化率,需要根据用户行为数据的分析结果来为用户推荐适合的商品。而电商网站上会有大量的历史交易记录和商品评价数据,这些数据里包含了用户的浏览偏好、搜索习惯、购买行为和其他相关信息。由于海量的历史数据无法直接用于推荐系统的训练,因此需要先对原始数据进行特征工程、数据清洗、数据转换等处理工作,然后再利用这些处理过的数据进行机器学习模型的训练,生成一个模型可以预测新的用户行为并进行推荐。
在商品推荐领域,SVM被广泛地应用于推荐系统中,尤其是在用户行为数据集较大时。如图1所示,SVM可以用来做商品推荐的特征抽取、降维和分类。
如图1所示