作者:禅与计算机程序设计艺术
1.简介
粒子群(Particle Swarm Optimization, PSO)是一种优化算法,它能够在多维空间中找到全局最优值,尤其适用于复杂的非线性函数优化问题。它主要由全局动态寻优算法和局部随机搜索法组成,可以处理各种复杂的多模态优化问题。而粒子群算法的突出特征就是它的自组织特性,即所有粒子群体都朝着共同的目标方向迈进。 粒子势场(Field Potential)是描述粒子群体行为的物理学概念,通过势场可将多维空间中的各个点联系到一起,并根据其运动轨迷实时更新粒子位置。势场存在于宏观环境,如力场、电场等,也可以是微观系统的物理场,比如电子的轨道、磁场、声波的传播等。粒子势场的本质是在特定的物理学问题下,利用微积分方法建立起能够反映该问题潜在特性的势函数。粒子势场也具有空间-时间隔离的性质,也就是说在某一时刻,粒子位置所处的势场是确定的,并不会随时间而变化。 粒子群算法和粒子势场可以帮助我们更好地理解和解决复杂的非线性优化问题。下面,我们就从这两个概念的基础知识出发,了解粒子群算法和粒子势场的基本概念、相互关系、量子态以及具体例子。
2.1 粒子群算法概述
2.1.1 概念
粒子群算法(Particle Swarm Optimization,PSO)