应用数学与初等函数论基础概念简介

在这里插入图片描述

作者:禅与计算机程序设计艺术

1.简介

引言

为了促进读者了解并掌握应用数学的一些基本概念、技巧、方法,加强数学学习的方法论,从而能够真正做到“知其然而不自觉”。提升科研、工程、业务人员对数学的理解水平,提升工作效率和质量。通过阅读本文,读者可以获益匪浅。

文章结构

文章共分六大部分,如下:

  1. 背景介绍:简单的介绍文章的背景知识;
  2. 基本概念术语说明:详细介绍应用数学中的基本概念、术语和相关定义;
  3. 核心算法原理及操作步骤:详细介绍应用数学中最常用的几种算法,如微积分、线性代数、概率论、随机过程、运筹学等,并提供相应的代码实现;
  4. 具体代码实例和解释说明:通过具体的实例对相应的算法进行阐述和解析,使得读者能够更好地理解算法原理和实际操作;
  5. 未来发展趋势与挑战:展望一下应用数学的发展前景及其面临的新机遇和挑战。同时分析当前的一些数学应用领域中存在的问题及其解决方案,对未来数学在学科发展、产业界布局等方面的作用给出建议;
  6. 附录常见问题与解答:集中总结和回答一些日常生活中常见的问题,并对相应的知识点进行梳理和延伸。

2.背景介绍

随着互联网信息化的飞速发展、移动通信的普及和电子商务的兴起,传统行业正在被互联网和物联网所冲击。越来越多的创新型企业和企业主们面临的选择是综合各种因素考虑,比如成本效益,竞争优势,快速响应市场变化需求等。面对日益壮大的经济和社会,人才的短缺成为一个突出的难题。如何培养一批有才能的数学专业人才,成为一个热门话题。近年来,美国的麻省理工学院、斯坦福大学、加州大学洛杉矶分校等顶尖名校纷纷开设数学相关课程,吸引了众多国际知名院校的学生,形成了很好的氛围。
数学作为基础学科,其涵盖范围广泛、重要性极高,被各个学科、科研团队广泛应用。数学有助于解决很多学科的研究问题,如物理、工程、心理、生物、医学、经济学、信息论、金融学等。随着云计算、物联网、区块链等新一代数字技术的发展,数据量的增加带来了复杂性和挑战,如何有效处理、分析和利用数据成为了新的课题。如何应对日益复杂的数据,成为全球领域的重大挑战。

3.基本概念术语说明

首先,介绍应用数学中的基本概念、术语和相关定义。

1.集合(Set)

集合是一个无序且元素不可重复的整体,通常由{}括起来,其中每个元素用逗号分隔。一般来说,集合由若干元素组成,而每个元素又称为该集合的一个成员。集合运算符有:∩ (交集) , ∪(并集),− (补集) 。例如:S = {a, b, c} ∩ {b, d}, T = {1, 2, 3} − {2}.

2.标量(Scalar)

标量是一个单一的数值,即一个数。例如:x = 3.5。

3.向量(Vector)

向量是一个数列,表示一维或二维空间中的位置、速度、方向、大小等。它由一系列具有相同数量元素的标量组成,即每一个元素都对应着一个坐标。向量运算符有:+ (加法),- (减法),* (内积),/ (外积)。例如:v = <1, 2>, w = <-1, 3> + <2, -1>.

4.矩阵(Matrix)

矩阵是一个方阵,即一个由m * n 个元素排列成的矩形数组。矩阵运算符有:+ (加法),- (减法),* (乘法),\ (左除),/ (右除)。例如:A = |2, -1; 1, 2|, B = |-1, 2|; 3, -2|.

5.张量(Tensor)

张量是一个n阶的数组,它由n个索引轴和相应维度的元素组成。张量运算符有:+ (加法),- (减法),* (乘法),\ (左除),/ (右除)。例如:X = [2, 1], Y = [-1, 2]; Z[i][j] = X[i] + Y[j].

6.函数(Function)

函数是一个关系,用于把输入映射到输出。它一般接受输入数据,根据某些规则对其进行转换,然后返回相应的结果。函数的一般形式是 y = f(x), x 是输入数据,y 是输出结果。函数有两个基本特征:

  • 单调性:函数f(x)对于所有的x,当x的增长或收缩时,函数值也应该相应地增长或收缩。
  • 一致性:如果f(x)对于某个x的输入是确定的,则其输出就是确定的。

7.直观抽象(Intuitive Abstraction)

直观抽象指的是抽象化现实世界,将抽象出来的图景简单、易于理解。直观抽象的关键是要用简单的语言描述出来。举例来说,一条河流可以用一座小桥描绘出来,但我们很容易就能明白两座桥之间的距离。在应用数学中,抽象通常是指将复杂的事物用简单的方式表示出来,提取其中的规律和模式。例如,一个三维空间可以用二维图示来进行展示,但直观上我们还是可以知道它有三个轴。

8.正则表达式(Regular Expression)

正则表达式是一种描述字符模式的方式。它用来匹配字符串中的字符组合。正则表达式的语法可以让我们方便地指定搜索字符串的模式。常用的正则表达式示例如下:

- 查找所有以"hello"开头的单词:\w*hello\w*
- 查找所有单词以元音结束:"^[aeiou]\w*$"
- 查查所有以"abc"开头,并且以数字结尾的单词:"^abc\d.*$"

9.逻辑演算(Boolean Algebra)

逻辑演算是一门关于布尔命题的数学科目。它包括布尔值(true、false),逻辑操作(not、and、or、if…then…else等),以及一些特殊的逻辑定理。例如,一个人是否健康可以通过测量其身体症状来判断,这个过程就可以看作是对身体数据的推理过程。同样,在计算机科学中,逻辑推理和逻辑分析都是非常重要的技术。

10.微积分(Calculus)

微积分是数学的一门重要分支,它涉及到微分、导数、积分、曲线救赎等概念。微积分应用十分广泛,有助于对数据的探索、预测和分析。例如,人体血压的监测和诊断依赖于实时测量血压值的过程,也是需要微积分支撑的。

11.线性代数(Linear Algebra)

线性代数是一种基础学科,它的目标是研究一切线段上的向量和线性方程组。它涉及到矩阵的乘法、求逆、特征值、特征向量、秩、行列式等概念。线性代数的应用遍及整个科学、工程和商业领域。

12.概率论(Probability Theory)

概率论是统计学的一项核心理论,它研究的是一件事情发生的可能性和必然性。概率论与数理统计密切相关,它有助于我们对数据产生假设,建立模型,并得出可靠的预测。例如,相信今天的股票市场上会出现大的牛市或熊市的想法,是基于过去多年股价走势的预期。

13.随机过程(Random Process)

随机过程是概率论中最重要的概念之一。它描述的是一类随机变量的生成方式,也可以视作是随机变量的分布函数。随机过程的主要特点是其中的元素是随机的,但是它们之间又有着一定的联系和规律。常用的随机过程有:指数分布、雷达波、Wiener过程、Brownian motion、Poisson process等。

14.运筹学(Operations Research)

运筹学是管理学的一个分支,研究的是怎样通过制定策略、资源分配、决策等手段,最大限度地提升资源利用率、降低成本、改善服务质量、优化效率等。运筹学与数学的关系很紧密,它有助于解答很多复杂的问题,如流量分配、生产规划、供应链管理等。

15.离散数学(Discrete Mathematics)

离散数学是一门研究各种数字系统的基础学科,其理论基础来源于布尔代数和图灵机。离散数学有助于计算机的设计、安全防护、通信传输等方面。在应用数学领域,离散数学也扮演着重要角色,如随机数生成、加密算法等。

4.核心算法原理及操作步骤

第二部分介绍应用数学中最常用的几种算法,并提供相应的代码实现。

1.微积分

微积分是应用数学中最基本的数学工具。它提供了无穷多个变量之间的导数、变分、积分、微分、积分商和极限等概念和公式。微积分的运用十分广泛,如物理学、材料科学、工程学、经济学等。以下我们给出微积分的一些基本知识:

1.1 导数

导数(derivative)是微积分中一个重要概念。它表示函数在某个点上变化率。导数定义为:f’(x)=lim_{h->0}(f(x+h)-f(x))/h, h=delta x。其中,f(x+h)表示将x的值增加一个单位delta x后的函数值,lim_{h->0}表示h趋于零时,函数的值趋于极限值。

1.2 一阶导数

一阶导数(first derivative)表示在一个点处的函数一阶偏导数,即斜率。它的定义为df/dx=(f(x+h)-f(x-h))/(2h)。其中,h是个很小的正数,代表了函数变化的步长。当h趋于零时,一阶导数表示函数的极限。

1.3 二阶导数

二阶导数(second derivative)表示在一个点处的函数二阶偏导数,即曲率。它的定义为d²f/dx²=(f(x+h)+f(x-h)-2f(x))/h²。其中,h是个很小的正数,代表了函数变化的步长。当h趋于零时,二阶导数表示函数的渐近线性。

1.4 导数的几何意义

导数是曲线的切线,用来衡量一个曲线上任意一点的切线斜率。一个曲线的切线与该曲线的交点处的函数值相等,因此导数值反映了曲线弯曲方向的大小,可以用来确定下坡、上坡、曲折点的位置和高度。另外,导数值还可以用来确定法向量的方向。

1.5 偏导数

偏导数(partial derivative)表示函数的某个变量的导数,也叫切分法。偏导数的定义为f’_k(x_1,x_2,…x_n)=∂_k{f(x_1,x_2,…,x_n)}=∂_kf(x_1,x_2,…,x_n)/∂x_k。其中,k=1,2,…,n表示变量的编号,对不同的k求偏导数得到不同变量的函数偏导数。

2.线性代数

线性代数是应用数学中另一个基本的工具。它有助于对向量和矩阵进行基本运算,包括加法、减法、乘法、转置、秩、行列式等。线性代数的应用在机器学习、信号处理、力学等领域均有重要影响。以下我们给出线性代数的一些基本知识:

2.1 向量

向量(vector)是线性代数中最基本的对象。它由一组有序的标量值组成。线性代数中的向量可以看作是一个点,或者说是空间中一点的位置或运动轨迹。向量运算可以用来表示线性映射和空间投影等。向量运算符有:+ (加法),- (减法),* (内积),/ (外积)。例如:<2, 3> + <1, -2>, <2, 3>*<1, -2>, |<-3,-2>|

2.2 矩阵

矩阵(matrix)是由向量组成的方阵。它由一组同维度的向量组成。矩阵运算可以用来表示线性方程组的求解、图像变换、方差分析、预测等。矩阵运算符有:+ (加法),- (减法),* (乘法),^T (转置),| (秩),det (行列式)。例如:|2, -1;| * |1, 2;|-1, 2| = |1, -2;|

2.3 特征值和特征向量

特征值(eigenvalue)表示一个矩阵的特殊值,它与对应的特征向量相对应。特征值是对角矩阵的特征根,特征向量是对应特征值的一个基底。矩阵的特征值和特征向量构成了一个希尔伯特空间(Hilbert space)。特征值和特征向量的应用十分广泛,如PCA、奇异值分解、最小二乘估计、流形学习等。

3.概率论

概率论是应用数学中的一门重要学科。它对随机事件的频率进行数学描述,以及对随机事件的各种现象进行分类和分析。概率论有助于对复杂的系统行为建模,并对其进行预测。以下我们给出概率论的一些基本知识:

3.1 概率

概率(probability)是统计学中的一个重要概念。它表示随机事件发生的可能性。在概率论中,随机事件是一个样本空间的一个子集,该子集中包含着可能发生的事件以及这些事件发生的次数的统计数据。例如,抛掷一个骰子可以认为是一个随机事件,其中包含了从1到6的六个面,且每一个面都有相同的可能性。

3.2 期望值

期望值(expectation value)是统计学中一个重要的概念。它表示一个随机变量的数学期望,也就是我们希望得到的平均值。它是对随机变量的平均值的刻画,是随机变量取值分布的无偏估计。期望值的计算公式是E(X)=∑xkP(xk)。其中,E()表示期望值,P(xk)表示取值为xk的随机变量的概率,k=1,2,…,n。

3.3 中心极限定理

中心极限定理(central limit theorem)是概率论中一个重要定理。它告诉我们,许多连续分布的随机变量,如果其期望和方差存在,那么它们的概率密度函数随着样本容量的增大会趋于正态分布。

3.4 概率密度函数

概率密度函数(probability density function)表示随机变量取值在某个范围内的概率。它依赖于变量的取值和上下限。概率密度函数有助于对随机变量进行可视化,并可以给出随机变量的概率分布情况。

3.5 分布

分布(distribution)是一组随机变量的统计数据。它反映了随机变量的形状、位置和分布情况。常用的分布有均匀分布、正态分布、卡方分布、负二项分布等。

4.随机过程

随机过程(random process)是概率论中的另一个重要概念。它刻画的是一类随机变量的生成方式。它主要有两种类型:一是由固定的参数生成的过程,称为过程模型;二是由随机过程生成器生成的随机变量序列,称为样本路径。随机过程是统计分析中的核心概念,其应用十分广泛。以下我们给出随机过程的一些基本知识:

4.1 独立同分布

独立同分布(independent and identically distributed random variables)是随机过程中的一种常见假设。它表明了随机变量在时间上的独立性,即在任意的时间点,随机变量的取值只依赖于之前的历史事件。

4.2 Wiener过程

Wiener过程(Wiener process)是一种典型的随机过程模型。它由两个随机变量组成:一个平稳的Wiener过程,另一个独立的泊松过程。该过程描述了有噪声的随机环境中的随机游走。

4.3 Brownian motion

Brownian motion(布朗运动)是一种典型的随机过程模型。它由一个平稳的Wiener过程和一串有序随机变量组成,称为真随机变量。该过程描述了沿时间的随机游走。

4.4 Poisson过程

Poisson过程(Poisson process)是一种典型的随机过程模型。它由两个随机变量组成:一个泊松过程,另一个平稳的Wiener过程。该过程描述了随机事件发生的速率。

5.运筹学

运筹学(operations research)是管理学的一个重要分支。它研究的是如何通过制定策略、资源分配、决策等手段,最大限度地提升资源利用率、降低成本、改善服务质量、优化效率等。运筹学的关键是对信息的管理,其与数学的联系也十分紧密。以下我们给出运筹学的一些基本知识:

5.1 动态规划

动态规划(dynamic programming)是运筹学中一种优化方法。它通过考虑局部最优解和全局最优解之间的权衡,找到全局最优解。动态规划有利于求解复杂的决策问题,其应用十分广泛。

5.2 整数线性规划

整数线性规划(integer linear programing)是运筹学中另一种优化方法。它要求对整数变量的线性规划求解,求解的是具有整数解的最佳方案。

5.3 线性规划

线性规划(linear programming)是运筹学中另一种优化方法。它要求对线性约束条件下的整数变量求解,求解的是具有整数解的最佳方案。

5.4 网络流

网络流(network flow)是运筹学中一种优化方法。它用图论的思想描述了信息的流动过程,利用网络的限制,来求解信息最优分配问题。网络流的应用十分广泛,如运输问题、调度问题、生产调度问题等。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

禅与计算机程序设计艺术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值