作者:禅与计算机程序设计艺术
1.简介
深度学习(Deep Learning)及其相关技术是指深层神经网络的构建、训练及应用技术,是近年来非常火爆的AI技术领域。随着人们对人工智能技术的需求的不断提升,越来越多的人开始涉足这条艰巨的道路上。
本文将介绍当前最流行的深度学习框架TensorFlow,以及对它进行深入剖析的过程中所需的关键技术。希望能够通过本文提供的知识点帮助读者在理解、使用、优化深度学习框架TensorFlow、了解它背后的算法原理和框架构建流程等方面更加得心应手。
2.深度学习背景介绍
2.1 深度学习的定义
深度学习是机器学习的一种方法,它利用数据的非线性组合来表示输入数据,并通过反向传播算法更新权重,从而使得模型具备学习能力,解决复杂的问题。深度学习通过堆叠层次的神经网络结构,逐渐抽象出数据的高阶特征,最终达到学习数据的泛化能力。
2.2 深度学习的发展历史
深度学习的发展过程主要包括三个阶段:
- 预激活层(Theano)-2010
- 循环神经网络(LSTM)-2011
- 卷积神经网络(CNN)-2012
深度学习发展至今已经成为一种