架构师必知必会系列:人工智能与深度学习架构

本文深入探讨深度学习,从定义、发展历程到应用场景,详细解释关键概念如神经网络、激活函数、权重、优化器等,并介绍了TensorFlow框架的使用。同时,文章分析了深度学习在图像识别、文本分析、自然语言处理等多个领域的应用,并展望了未来发展趋势和挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

深度学习(Deep Learning)及其相关技术是指深层神经网络的构建、训练及应用技术,是近年来非常火爆的AI技术领域。随着人们对人工智能技术的需求的不断提升,越来越多的人开始涉足这条艰巨的道路上。
本文将介绍当前最流行的深度学习框架TensorFlow,以及对它进行深入剖析的过程中所需的关键技术。希望能够通过本文提供的知识点帮助读者在理解、使用、优化深度学习框架TensorFlow、了解它背后的算法原理和框架构建流程等方面更加得心应手。

2.深度学习背景介绍

2.1 深度学习的定义

深度学习是机器学习的一种方法,它利用数据的非线性组合来表示输入数据,并通过反向传播算法更新权重,从而使得模型具备学习能力,解决复杂的问题。深度学习通过堆叠层次的神经网络结构,逐渐抽象出数据的高阶特征,最终达到学习数据的泛化能力。

2.2 深度学习的发展历史

深度学习的发展过程主要包括三个阶段:

  1. 预激活层(Theano)-2010
  2. 循环神经网络(LSTM)-2011
  3. 卷积神经网络(CNN)-2012

深度学习发展至今已经成为一种

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值