Programmer‘s Guide to Data Mining

《程序员数据挖掘指南》深入浅出地介绍了数据挖掘的基本概念、分类、方法和应用场景。书中详细讲解了数据预处理,包括收集、清洗和数据转换与规范化,以及特征工程的重要性,如特征选择和降维。此外,还涵盖了模型构建、评估和数据挖掘在各行业的应用,旨在帮助读者掌握实际数据挖掘技巧,解决业务问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

随着互联网、移动互联网、物联网等新型通信技术的广泛应用和普及,越来越多的人开始将其作为数据源,生成海量的数据。这些数据既包括来自各类传感器的数据,也包括用户行为日志、社交网络数据、搜索引擎关键词数据、电子邮箱等非结构化数据。这些数据的处理、分析和挖掘对于了解客户需求、优化业务运营、改善服务质量至关重要。而对于很多从事计算机视觉、模式识别、自然语言处理、推荐系统等领域的科研工作者来说,在进行数据挖掘任务时常常会遇到很多困难。为了帮助大家解决数据挖掘过程中遇到的问题,本书根据实际经验编写,并结合作者多年从事机器学习和深度学习相关工作经验,力求用通俗易懂的语言阐述最新的机器学习方法和算法,同时重点介绍实践中可能遇到的一些问题和挑战。 本书共分六章,主要内容如下:

  1. 概览:介绍了数据挖掘的基本概念、分类、方法、评价指标和应用场景。
  2. 数据预处理:介绍了如何收集、清洗和准备数据,如缺失值处理、异常值检测、数据集划分、特征抽取等技术。
  3. 特征工程:介绍了如何利用特征工程技术提升模型效果,如特征选择、降维、正则化、交叉验证等技术。
  4. 模型构建:介绍了基于树形结构的决策树、支持向量机、神经网络、聚类、关联规则和随机森林等模型构建方法。并对每种模型给出了一些典型案例。
  5. 模型评估:介绍了常用的模型评估指标,如准确率、召回率、F1-Score、ROC曲线
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值