激光SLAM与视觉导航

本文介绍了激光SLAM(Simultaneous Localization And Mapping)技术,包括背景、核心概念如激光测距仪、激光雷达、里程计和回环检测,以及系统中的特征检测与跟踪、全局映射、局部优化和局部定位等关键步骤。文章详细讲解了SIFT算法、RANSAC算法在激光SLAM中的应用,并给出了代码实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.背景介绍

激光SLAM(Simultaneous Localization And Mapping)是指利用激光雷达和相机等传感器搭建实时地图,并同时获得机器人的位置信息的计算机视觉导航方法。通过建设激光SLAM系统,可以解决在复杂环境中精确识别机器人位置的问题。激光SLAM系统有助于提升机器人导航、准确执行任务的能力,更好地适应环境变化。随着激光SLAM技术的成熟,激光SLAM在遥感导航领域也逐渐被应用。

2.核心概念与联系

首先我们需要了解一下激光SLAM相关的基本概念:

  • 激光测距仪(LiDAR):激光测距仪通过探测并反馈目标物体的距离信息,使得激光雷达拥有了对空间进行三维描述的能力。激光测距仪使用方形的探测器探测目标区域,形成点云。然后进行扫描转换、计算距离等处理。
  • 激光雷达(LaserScanner):激光雷达是一种不依赖电磁波转动的装置,它可将激光能量直接吸收入激光线圈内,形成高速扫描电流。激光雷达将原始的激光信号转化为电信号,通过解码转换后输出雷达接收到的信号。
  • 里程计(Odometry):里程计是一个算法,用来估算机器人或者其他传感器自身在真实世界中的位置变化。通过记录下传感器设备自身运动的轨迹,从而计算出当前的
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值