1.背景介绍
随着人工智能技术的飞速发展,基于深度学习的神经网络模型层出不穷。在这些模型的基础上,诞生了多个高质量的文本生成模型,包括基于深度学习的文本生成模型、基于强化学习的文本生成模型等等。本文将从构建GPT-2模型——一个开源的多层次变压器注意力模型(Transformer)——入手,介绍其中的原理和具体应用方法。
GPT-2模型介绍
GPT-2(Generative Pre-trained Transformer 2)是由OpenAI团队于2019年10月发布的一款用于语言建模任务的预训练语言模型。它是一种基于Transformer架构的神经网络模型,并通过Google新闻语料库进行大规模训练而得出,其生成效果在当时已经超过了目前最好的成熟语言模型BERT。 GPT-2模型包含两大模块,即transformer编码器和解码器。其中,transformer编码器对输入序列进行向量化编码,并在编码过程中引入注意力机制来捕捉输入序列中各个位置的关联性。解码器根据编码器的输出向量和上一步预测结果对下一步的预测进行生成。两个模块之间的交互信息流动自然地驱动了模型的生成能力。除此之外,GPT-2还采用了一系列的预训练技巧来提升模型的泛化性能,如数据增强、正则化项、梯度惩罚项等。
2.核心概念与联系
2.1 transformer结构
GPT-2模型的主要特点就是